Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Map of bacterial gene interactions uncovers targets for future antibiotics

Despite rapid advances in reading the genetic code of living organisms, scientists still face a major challenge today—knowing a gene’s sequence does not automatically reveal what it does. Even in simple, well-studied bacteria like Escherichia coli (better known as E. coli), about one-quarter of the genes have no known function. Traditional approaches—turning off one gene at a time and studying the effects—are slow, laborious, and sometimes inconclusive due to gene redundancy.

Researchers from the Yong Loo Lin School of Medicine, National University of Singapore (NUS Medicine) and collaborators from the University of California, Berkeley (UC Berkeley) have developed a new technique called Dual transposon sequencing (Dual Tn-seq), which allows for rapid identification of genetic interactions. It maps how bacterial genes work together, revealing vulnerabilities that could be targeted by future antibiotics.

“This is like mapping the social network for ,” said Assistant Professor Chris Sham Lok To from the Infectious Diseases Translational Research Program and the Department of Microbiology and Immunology, NUS Medicine, who led the study. “We can now see which genes depend on each other, and which pairs of genes bacteria can’t live without. That’s exactly the insight we need for next-generation antibiotics.”

From engines to nanochips: Physicists redefine how heat really moves

Heat has always been something we thought we understood. From baking bread to running engines, the idea seemed simple: heat spreads out smoothly, like water soaking through a sponge. That simple picture, written down by Joseph Fourier 200 years ago, became the foundation of modern science and engineering.

But zoom into the nanoscale—inside the chips that power your smartphone, AI hardware, or next-generation solar panels—and the story changes. Here, heat doesn’t just “diffuse.” It can ripple like , remember its past, or flow in elegant streams like a fluid in a pipe. For decades, scientists had pieces of this puzzle but no unifying explanation.

Now, researchers at Auburn University and the U.S. Department of Energy’s National Renewable Energy Laboratory have delivered what they call a “unified statistical theory of heat conduction.”

Third dimension of data storage: Physicists demonstrate first hybrid skyrmion tubes for higher-density quantum computing

Typically, the charge of electrons is used to store and process information in electronics-based devices. In spintronics, the focus is instead on the magnetic moment or on magnetic vortices, so-called skyrmions—the goal is smaller, faster, and more sustainable computers. To further increase storage density, skyrmions will not only be two-dimensional in the future, but will also conquer the third dimension.

Researchers from the Institute of Physics at Johannes Gutenberg University Mainz (JGU) have now succeeded in creating three-dimensional skyrmions, so-called hybrid skyrmion tubes, in synthetic antiferromagnets and have demonstrated for the first time that these skyrmion tubes move differently than two-dimensional skyrmions.

“Three-dimensional skyrmions are of interest for and brain-inspired computing, among other things—here the higher resulting from the third dimension is essential,” says Mona Bhukta from Professor Mathias Kläui’s research group. The results were published on September 26 in Nature Communications.

Harnessing GeSn semiconductors for tomorrow’s quantum world

An international team of researchers from Forschungszentrum Jülich (Germany), Tohoku University (Japan), and École Polytechnique de Montréal (Canada) has made a significant discovery in semiconductor science by revealing the remarkable spin-related material properties of Germanium-Tin (GeSn) semiconductors.

Semiconductors control the flow of electricity that power everyday technology all around us (such as cars and computers). However, technology is progressing at such a breakneck speed that it is straining current technologies.

“Semiconductors are approaching their physical and energy-efficiency limits in terms of speed, performance, and ,” says Makoto Kohda from Tohoku University. “This is a huge issue because we need semiconductors that can keep up as we shift to more demanding needs such as 5G/6G networks and the increased use of artificial intelligence.”

Chip-based phonon splitter brings hybrid quantum networks closer to reality

Researchers have created a chip-based device that can split phonons—tiny packets of mechanical vibration that can carry information in quantum systems. By filling a key gap, this device could help connect various quantum devices via phonons, paving the way for advanced computing and secure quantum communication.

“Phonons can serve as on-chip quantum messages that connect very different quantum systems, enabling hybrid networks and new ways to process in a compact, scalable format,” said research team leader Simon Gröblacher from Delft University of Technology in the Netherlands.

“To build practical phononic circuits requires a full set of chip-based components that can generate, guide, split and detect individual quanta of vibrations. While sources and waveguides already exist, a compact splitter was still missing.”

Physicist: After 33 billon years, universe ‘will end in a big crunch’

The universe is approaching the midpoint of its 33-billion-year lifespan, a Cornell physicist calculates with new data from dark-energy observatories. After expanding to its peak size about 11 billion years from now, it will begin to contract – snapping back like a rubber band to a single point at the end.

Henry Tye, the Horace White Professor of Physics Emeritus in the College of Arts and Sciences, reached this conclusion after adding new data to a model involving the “cosmological constant” – a factor introduced more than a century ago by Albert Einstein and used by cosmologists in recent years to predict the future of our universe.

“For the last 20 years, people believed that the cosmological constant is positive, and the universe will expand forever,” Tye said. “The new data seem to indicate that the cosmological constant is negative, and that the universe will end in a big crunch.”

Red Hat data breach escalates as ShinyHunters joins extortion

Enterprise software giant Red Hat is now being extorted by the ShinyHunters gang, with samples of stolen customer engagement reports (CERs) leaked on their data leak site.

News of the Red Hat data breach broke last week when a hacking group known as the Crimson Collective claimed to have stolen nearly 570GB of compressed data across 28,000 internal development repositories.

This data allegedly includes approximately 800 Customer Engagement Reports (CERs), which can contain sensitive information about a customer’s network, infrastructure, and platforms.

Microsoft: Critical GoAnywhere bug exploited in ransomware attacks

A cybercrime group, tracked as Storm-1175, has been actively exploiting a maximum severity GoAnywhere MFT vulnerability in Medusa ransomware attacks for nearly a month.

Tracked as CVE-2025–10035, this security flaw impacts Fortra’s web-based secure transfer GoAnywhere MFT tool, caused by a deserialization of untrusted data weakness in the License Servlet. This vulnerability can be exploited remotely in low-complexity attacks that don’t require user interaction.

Security analysts at the Shadowserver Foundation are now monitoring over 500 GoAnywhere MFT instances exposed online, although it’s unclear how many have already been patched.

/* */