Menu

Blog

Page 3982

Aug 23, 2022

New inexpensive Wi-Fi system improves fire detection

Posted by in categories: internet, robotics/AI

A Sydney Harbor Tunnel explosion showcases the work of UNSW researchers using wireless signals and artificial intelligence to more accurately identify dangerous fire situations.

Engineers from UNSW Sydney have developed a new fire detection system that could help save lives by monitoring the changes in Wi-Fi signals.

Continue reading “New inexpensive Wi-Fi system improves fire detection” »

Aug 23, 2022

Pawpaws are America’s hidden edible treasure. Here’s how to pick them

Posted by in categories: biotech/medical, food

Pawpaw varieties are assessed on their flavor, yield, fruit size, texture, and disease resistance, Crabtree says. She adds that the “best varieties” would be high yield trees that produce a pawpaw with “firmness and/or creaminess that’s not watery, mushy, or gritty” as well as a lower percentage of seeds.

Hunting for pawpaw

Native to 26 states, pawpaw can be found along the East Coast between Ontario, Canada, and northern Florida west to Kentucky, Ohio, Michigan, Nebraska, Kansas, and even Texas.

Aug 23, 2022

Researchers have discovered a material that can ‘remember’ like a human

Posted by in category: materials

Tunart/IStock.

Vanadium dioxide marks the first material EPFL researchers have discovered that identified as possessing this property.

Aug 23, 2022

SpaceX tweaks Starlink Gen2 plans to add Falcon 9 launch option

Posted by in categories: internet, satellites

SpaceX says it has revised plans for its next-generation Starlink Gen2 constellation to allow the upgraded satellites to launch on its workhorse Falcon 9 rocket in addition to Starship, a new and unproven vehicle.

Set to be the largest and most powerful rocket ever flown when it eventually debuts, SpaceX’s two-stage Starship launch vehicle is also intended to be fully reusable, theoretically slashing the cost of launching payloads into and beyond Earth orbit. Most importantly, SpaceX says that even in its fully-reusable configuration, Starship should be capable of launching up to 150 tons (~330,000 lb) to low Earth orbit (LEO) – nearly a magnitude more than Falcon 9. However, once said to be on track to debut as early as mid-2021 to early 2022, it’s no longer clear if Starship will be ready for regular Starlink launches anytime soon.

In August 2021, SpaceX failed a major Starlink Gen2 revision with the FCC that started the company along the path that led to now. That revision revealed plans to dramatically increase the size and capabilities of each Gen2 satellite, boosting their maximum throughput from about 50 gigabits per second (Gbps) to ~150 Gbps. Just as importantly, SpaceX’s August 2021 modification made it clear that the company would prefer to launch the entire constellation with Starship, although it included an alternative constellation design that would lend itself better to Falcon 9 launches.

Aug 23, 2022

Tuning Random Forest Hyperparameters

Posted by in categories: information science, robotics/AI

Hyperparameter tuning is important for algorithms. It improves their overall performance of a machine learning model and is set before the learning process and happens outside of the model. If hyperparameter tuning does not occur, the model will produce errors and inaccurate results as the loss function is not minimized.

Hyperparameter tuning is about finding a set of optimal hyperparameter values which maximizes the model’s performance, minimizes loss and produces better outputs.

Aug 23, 2022

Using tactile sensors and machine learning to improve how robots manipulate fabrics

Posted by in categories: information science, robotics/AI

In recent years, roboticists have been trying to improve how robots interact with different objects found in real-world settings. While some of their efforts yielded promising results, the manipulation skills of most existing robotic systems still lag behinds those of humans.

Fabrics are among the types of objects that have proved to be most challenging for to interact with. The main reasons for this are that pieces of cloth and other fabrics can be stretched, moved and folded in different ways, which can result in complex material dynamics and self-occlusions.

Researchers at Carnegie Mellon University’s Robotics Institute have recently proposed a new computational technique that could allow robots to better understand and handle fabrics. This technique, introduced in a paper set to be presented at the International Conference on Intelligent Robots and Systems and pre-published on arXiv, is based on the use of a and a simple machine-learning algorithm, known as a classifier.

Aug 23, 2022

Chaos synchronization between linearly coupled chaotic systems

Posted by in categories: biotech/medical, engineering, neuroscience

Chaos, as a very interesting nonlinear phenomenon, has been intensively studied in the last three decades [10], [13]. It is found to be useful or has great potential in many disciplines such as in collapse prevention of power systems, biomedical engineering applications to the human brain and heart, thorough liquid mixing with low power consumption, secret communication technology, to name just a few [10], [13], [24].

Over the last decade, many new types of synchronization have appeared: chaotic synchronization [3], [4], lag synchronization [9], adaptive synchronization [2], phase synchronization [6], and generalized synchronization [9], to mention only a few. Since the discovery of chaos synchronization [3], there has been tremendous interest in studying the synchronization of chaotic systems [10]. Recently, synchronization of coupled chaotic systems has received considerable attention [1], [2], [5], [7]. Especially, a typical study of synchronization is the coupled identical chaotic systems [1], [6].

In 1963, Lorenz found the first classical chaotic attractor [12]. In 1999, Chen found another similar but topologically not equivalent chaotic attractor [11], [21], [22], as the dual of the Lorenz system, in a sense defined by Vanĕc̆ek and C̆elikovský [23]: The Lorenz system satisfies the condition a12 a21 0 while Chen system satisfies a12 a21 0. Very recently, Lü et al. produced a new chaotic system [14], [15], which satisfies the condition a12 a21 =0, thereby bridging the gap between the Lorenz and Chen attractors [15], [16], [17].

Aug 23, 2022

NASA’s Artemis 1 moon mission is ‘go’ for Aug. 29 launch

Posted by in category: space travel

The Artemis 1 mission will use a Space Launch System megarocket to launch an Orion spacecraft to the moon.

Aug 23, 2022

This is What Entire Observable Universe Looks Like in a Single Image

Posted by in category: space

Isn’t it beautiful? This is an illustrated logarithmic scale conception of the observable Universe with the Solar System at the centre.

Aug 23, 2022

In a week, we can tell if something slows aging

Posted by in categories: biotech/medical, life extension, robotics/AI

The early-stage development of many age-targeting compounds often involves studies of their effects on the lifespan of the transparent nematode (worm) model Caenorhabditis elegans. A highly manual process, this exercise is time-consuming and only produces data on one endpoint – lifespan.

Durham University associate professors David Weinkove and Chris Saunter invented a technology that automates measurements of movement in many large populations of worms simultaneously. Crucially, this technology goes beyond measuring lifespan, also capturing information about how worms’ health declines as they age – their healthspan.

Longevity. Technology: Together, Weinkove and Saunter have co-founded a spinout company called Magnitude Biosciences, leveraging their innovative platform to test drugs and other interventions for their capacity to prolong healthspan. We caught up with Weinkove to learn more about the background to the company and where it goes from here.