Toggle light / dark theme

More than one-third of UK health experts are not aware of Charles Bonnet syndrome — CBS — a condition which can cause vivid, and sometimes frightening, hallucinations.

A poll of 1,100 health experts — including GPs, doctors and optometrists — found 37 per cent were not aware of CBS.

The condition is not caused by mental health problems or dementia. It is purely due to a loss of sight — 60 per cent or more — which reduces or stops the regular messages from the eye to the brain.

The human brain is a complex system exhibiting multi-scale spatiotemporal organization. In this talk, I will provide an overview of my lab’s work on large-scale functional network organization across different timescales. First, I will present a biophysically plausible model of second-level fluctuation in the brain’s functional connectivity patterns. I will then discuss how minute-level task-state changes can predict behavioral traits. This is followed by exploring how brain dynamics can vary over the course of a day. Finally, I will discuss our work on estimating individual-level network markers that are stable across weeks and months.

This video is part of the SNAC seminar series organized by Mac Shine, Joe Lizier, and Ben Fulcher (The University of Sydney).

Cybercriminals hacked employees of at least two US federal civilian agencies last year as part of a “widespread” fraud campaign that sought to steal money from individuals’ bank accounts, US cybersecurity officials revealed Wednesday.

In one case, the unidentified hackers posed as tech support, convinced a federal employee to call them and then instructed the federal employee to visit a malicious website, according to the advisory from the US Cybersecurity and Infrastructure Security Agency, National Security Agency and a threat-sharing center for state and local governments known as MS-ISAC.

The goal of the scam, which appears to have hit both private sector and government agencies, was to trick victims into sending the scammers money. It was unclear if that happened in the case of the federal employees.

Dr. Nadine Lamberski, D.V.M., Dipl. ACZM, Dipl. ECZM (ZHM), is Chief Conservation and Wildlife Health Officer, at the San Diego Zoo Wildlife Alliance (https://sandiegozoowildlifealliance.org/about-us/key-leaders/nadine-lamberski).

Dr. Lamberski leads a unified team of conservation scientists, researchers, wildlife nutritionists, and wildlife veterinarians, cultivating a strategic approach to conservation efforts. She is aligning San Diego Zoo Wildlife Alliance with other global conservation organizations and developing strategies that safeguard biodiversity so all life can thrive.

Dr. Lamberski joined the San Diego Zoo Safari Park in 2001 as senior veterinarian, following seven years as the senior veterinarian at Riverbanks Zoological Park and Botanical Garden in Columbia, South Carolina. She completed an internship at the University of Tennessee and Zoo Knoxville, followed by a zoological medicine residency at the University of California, Davis.

Dr. Lamberski has focused her career on the health and welfare of zoological species, as well as on the conservation impacts of disease on small or fragmented wildlife populations. She has participated in several field projects, most notably studying black-footed cats in southern.

REHOVOT, ISRAEL—March 17, 2021— To observe how a tiny ball of identical cells on its way to becoming a mammalian embryo first attaches to an awaiting uterine wall and then develops into the nervous system, heart, stomach, and limbs: This has been a highly sought-after grail in the field of embryonic development for nearly 100 years. Now, Prof. Jacob Hanna of the Weizmann Institute of Science and his group have accomplished this feat. The method they created for growing mouse embryos outside the womb during the initial stages after embryo implantation will give researchers an unprecedented tool for understanding the development program encoded in the genes, and may provide detailed insights into birth and developmental defects as well as those involved in embryo implantation. The results were published in Nature.

Prof. Hanna, who is in the Institute’s Department of Molecular Genetics, explains that much of what is currently known about mammalian embryonic development comes through either observing the process in non-mammals, like frogs or fish that lay transparent eggs, or obtaining static images from dissected mouse embryos and adding them together. The idea of growing early-stage embryos outside the uterus has been around since before the 1930s, Prof. Hanna says, but those experiments had limited success and the embryos tended to be abnormal.

Prof. Hanna’s team decided to renew that effort in order to advance the research in his lab, which focuses on the way the development program is enacted in embryonic stem cells. Over seven years, through trial and error, fine-tuning and double-checking, his team came up with a two-step process in which they were able to grow normally developing mouse embryos outside the uterus for six days – around a third of their 20-day gestation period – by which time the embryos have a well-defined body plan and visible organs. “To us, that is the most mysterious and the most interesting part of embryonic development, and we can now observe it and experiment with it in amazing detail,” say Prof. Hanna.