Toggle light / dark theme

Cybercriminals hacked employees of at least two US federal civilian agencies last year as part of a “widespread” fraud campaign that sought to steal money from individuals’ bank accounts, US cybersecurity officials revealed Wednesday.

In one case, the unidentified hackers posed as tech support, convinced a federal employee to call them and then instructed the federal employee to visit a malicious website, according to the advisory from the US Cybersecurity and Infrastructure Security Agency, National Security Agency and a threat-sharing center for state and local governments known as MS-ISAC.

The goal of the scam, which appears to have hit both private sector and government agencies, was to trick victims into sending the scammers money. It was unclear if that happened in the case of the federal employees.

Dr. Nadine Lamberski, D.V.M., Dipl. ACZM, Dipl. ECZM (ZHM), is Chief Conservation and Wildlife Health Officer, at the San Diego Zoo Wildlife Alliance (https://sandiegozoowildlifealliance.org/about-us/key-leaders/nadine-lamberski).

Dr. Lamberski leads a unified team of conservation scientists, researchers, wildlife nutritionists, and wildlife veterinarians, cultivating a strategic approach to conservation efforts. She is aligning San Diego Zoo Wildlife Alliance with other global conservation organizations and developing strategies that safeguard biodiversity so all life can thrive.

Dr. Lamberski joined the San Diego Zoo Safari Park in 2001 as senior veterinarian, following seven years as the senior veterinarian at Riverbanks Zoological Park and Botanical Garden in Columbia, South Carolina. She completed an internship at the University of Tennessee and Zoo Knoxville, followed by a zoological medicine residency at the University of California, Davis.

Dr. Lamberski has focused her career on the health and welfare of zoological species, as well as on the conservation impacts of disease on small or fragmented wildlife populations. She has participated in several field projects, most notably studying black-footed cats in southern.

REHOVOT, ISRAEL—March 17, 2021— To observe how a tiny ball of identical cells on its way to becoming a mammalian embryo first attaches to an awaiting uterine wall and then develops into the nervous system, heart, stomach, and limbs: This has been a highly sought-after grail in the field of embryonic development for nearly 100 years. Now, Prof. Jacob Hanna of the Weizmann Institute of Science and his group have accomplished this feat. The method they created for growing mouse embryos outside the womb during the initial stages after embryo implantation will give researchers an unprecedented tool for understanding the development program encoded in the genes, and may provide detailed insights into birth and developmental defects as well as those involved in embryo implantation. The results were published in Nature.

Prof. Hanna, who is in the Institute’s Department of Molecular Genetics, explains that much of what is currently known about mammalian embryonic development comes through either observing the process in non-mammals, like frogs or fish that lay transparent eggs, or obtaining static images from dissected mouse embryos and adding them together. The idea of growing early-stage embryos outside the uterus has been around since before the 1930s, Prof. Hanna says, but those experiments had limited success and the embryos tended to be abnormal.

Prof. Hanna’s team decided to renew that effort in order to advance the research in his lab, which focuses on the way the development program is enacted in embryonic stem cells. Over seven years, through trial and error, fine-tuning and double-checking, his team came up with a two-step process in which they were able to grow normally developing mouse embryos outside the uterus for six days – around a third of their 20-day gestation period – by which time the embryos have a well-defined body plan and visible organs. “To us, that is the most mysterious and the most interesting part of embryonic development, and we can now observe it and experiment with it in amazing detail,” say Prof. Hanna.

A robot that can shift between solid and liquid states has been filmed escaping from a miniature jail cell with bars too close together to allow it to leave in solid form. The creators claim they were inspired by sea cucumbers’ capacity to alter their tissue stiffness – but the scene is just a little too similar to Robert Patrick liquifying his way through the mental hospital bars for us to believe them. We even see the famous reabsorption of the little bit left behind.

Hard-bodied robots are common, even if they have yet to reach the capacities of science fiction films. Their soft-bodied counterparts can get into tight spaces, but what they can do there is limited, and they are also difficult to control.

A team led by Dr Chengfeng Pan of the Chinese University of Hong Kong has made a robot that can swap states to whichever is most needed, with a video that sums it up. The prison escape may trigger our fears, but robots like these could also provide lifesaving services others cannot.

Stephen Wolfram hosts a live and unscripted Ask Me Anything about the history of science and technology for all ages. Find the playlist of Q&A’s here: https://wolfr.am/youtube-sw-qa.

Originally livestreamed at: https://twitch.tv/stephen_wolfram.

If you missed the original livestream of this episode, feel free to submit a question you would like Stephen to answer in a future Q&A livestream here: https://wolfr.am/12cczmv5J

Follow us on our official social media channels.