Toggle light / dark theme

Astronomers have discovered a “forbidden” planet that appears to be far larger than should be possible given its circumstances. A team of researchers investigated a candidate exoplanet called TOI 5205b, first identified by NASA’s Transiting Exoplanet Survey Satellite (TESS), and not only confirmed that the planet was there but also discovered that it has some baffling characteristics.

The exoplanet orbits a type of star called an M dwarf or red dwarf. These are the most common type of stars in our galaxy and are small and cool, typically being around half as hot as our sun.

While it’s common to find exoplanets orbiting red dwarfs, it’s rare to find gas giants orbiting them. And in the case of the recent discovery, the gas giant exoplanet was found orbiting a low-mass M dwarf, which is unheard of. The planet is very large in comparison to its star and blocks out around 7% of the star’s light when passing in front of it.

Normal body temperature can vary from individual to individual. However, despite this variation, the average basal body temperature of humans has mysteriously dropped since the 1860s. A recent study points to the gut microbiome as a possible contributor to regulating body temperature, both in healthy individuals and during life-threatening infections.

The study, conducted by a team of researchers led by Robert Dickson, M.D., at the University of Michigan Medical School, utilized health records from patients admitted to the hospital with sepsis and conducted experiments on mice to investigate the relationship between the gut bacteria composition, temperature changes, and health outcomes.

Sepsis, the body’s response to a life-threatening infection, can cause drastic changes in body temperature, the trajectory of which is linked to mortality. Previous work has demonstrated that hospitalized patients with sepsis vary widely in their temperature responses, and this variation predicts their survival.

A new study suggests that we may be able to prevent chronic inflammation in multiple sclerosis (MS) patients in a totally new way, by manipulating their gut microbiomes — the unique collection of microbes that live in our digestive tracts and play an important role in our health.

“We are approaching the search for multiple sclerosis therapeutics from a new direction,” said lead researcher Andrea Merchak from the University of Virginia (UVA).

Chronic inflammation: The immune system fights infections and heals injuries by sending inflammatory cells to the site of the problem. This process, inflammation, can cause pain, swelling, or other side effects, but ultimately, it’s for the greater good.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Green Tea: https://www.ochaandco.com/?ref=conqueraging.

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.

Dr. Tamar Gutnick, first author and former postdoctoral researcher in the Physics and Biology Unit at the Okinawa Institute of Science and Technology (OIST), said, “If we want to understand how the brain works, octopuses are the perfect animal to study as a comparison to mammals. They have a large brain, an amazingly unique body, and advanced cognitive abilities that have developed completely differently from those of vertebrates.”

Octopuses have eight powerful and ultra-flexible arms, which can reach anywhere on their body. If we tried to attach wires to them, they would immediately rip it off, so we needed to get the equipment out of their reach by placing it under their skin.”

Scientists settled on small and lightweight data loggers as the solution, initially designed to track the brain activity of birds during flight. The team modified the devices to be waterproof and compact enough to slip inside the octopuses easily. Up to 12 hours of continuous recording were possible with the batteries, which had to operate in a low-air condition.