Illustrated is the power of combined interference with different DNA damage response processes to combat cancer: Homologous recombination, which is selectively deficient in the tumour due to the BRCA defect, and base excision repair of single strand breaks, which is blocked by the administration of PARP inhibitors.
Future computers You WON’T See Coming…(analog computing)
An emerging technology called analogue AI accelerators has the potential to completely change the AI sector. These accelerators execute computations using analogue circuits, which are distinct from digital circuits. They have advantages in handling specific kinds of AI algorithms, speed, and energy efficiency. We will examine the potential of this technology, its present constraints, and the use of analogue computing in AI in the future. Join us as we explore the realm of analogue AI accelerators and see how they’re influencing computing’s future. Don’t miss this engaging and educational film; click the subscribe button and check back for additional information about the newest developments in AI technology.
These animations show cellular biology on the molecular scale. The structure of chromatin, the processes of transcription, translation, DNA replication, and cell division are shown. All animations are scientifically accurate and derived from molecular biology and crystallography research. I have composed this video from multiple animations under fair use for non-profit, educational purposes. I do not claim copyright on this video or its contents, with the exception of the cell image. Most credit goes to Drew Berry and the Walter and Eliza Hall Institute of Medical Research (WEHI TV) for the animations. Full credits are at the end of the video.
These are the molecular machines inside your body that make cell division possible. Animation by Drew Berry at the Walter and Eliza Hall Institute of Medical Research. http://wehi.tv.
Special thanks to Patreon supporters: Joshua Abenir, Tony Fadell, Donal Botkin, Jeff Straathof, Zach Mueller, Ron Neal, Nathan Hansen.
Every day in an adult human roughly 50–70 billion of your cells die. They may be damaged, stressed, or just plain old — this is normal, in fact it’s called programmed cell death.
Gravity is the most familiar of the known forces, but it seems to be eternal and unchanging. However, scientists believe that gravity moves with a specific speed. In this video, Fermilab’s Dr. Don Lincoln describes a fascinating observation that definitively measures the speed of gravity.
In this video students of the Maastricht Science Program NanoBiology Course 2020, show their explanation of the SARS-CoV-2 viral budding. Using CellPAINT, UCFS Chimera and their creativity they explain the nanobiology of how the SARS-CoV-2 virion can bud and leave the cell.
Viruses are not living things. They are just complicated assemblies of molecules, in particular macromolecules such as proteins, oligonucleotides, combined with lipids and carbohydrates. A virus cannot function or reproduce by itself. It needs a host cell.
When a virus enters the host cell, a series of chemical reactions occur that lead to the production of new viruses. A virus needs to find a host cell, attach to it, enter it, and reprogram it such that it will replicate its genome and produce new proteins that allow the assembly of a new virus. Once new viruses have been assembled, they need to get out of the original host cell, on their way to the next host cell they can exhaust. Some viruses have an easy way out: they use up all the resource of the host cells until it dies and lyse. This would only work for naked viruses such as polyomavirus and adenovirus, which lacks a lipid membrane.
Washing hands has been a standard measure since the start of this COVID-19 pandemic. The soap will disintegrate the lipid envelop of the SARS-CoV2 viral particles, as this is an enveloped virus. Enveloped viruses need envelopment, a process in which the capsids become surrounded by a lipid bilayer. This process takes place prior to release. Two mechanisms for envelopment exist. First, envelopment can proceed sequentially after the completion of capsid assembly. The fully assembled capsids are recruited to the membrane by interaction of the viral capsids with viral envelope glycoprotein. Examples of this include herpesvirus and hepatitis B virus. Secondly, the envelopment can occur simultaneously with the capsid assembly. Retrovirus is the representative of this coupled mechanism.