Toggle light / dark theme

A decades-old drug used to treat urinary tract infections (UTIs) appears to have saved the life of a man infected by the “brain-eating” amoeba — and his case highlights the tremendous potential of a new type of genetic sequencing technology.

The patient: In 2021, a 54-year-old man was admitted to a Northern California hospital following a seizure. After an MRI revealed a mass in his brain, he was transferred to the UCSF Medical Center, where the mass was biopsied.

Based on the biopsy, doctors suspected that the patient’s brain was being attacked by an amoeba — a highly dangerous and unusual infection. They sent a sample to the University of Washington, Seattle, where a PCR test identified the pathogen as Balamuthia mandrillaris — a deadly brain-eating amoeba that kills more than 90% of people it infects.

Get Nebula using my link for 40% off an annual subscription: https://nebula.tv/medlifecrisis.

Watch this video ad-free: https://nebula.tv/videos/medlifecrisis-how-to-prevent-almost-all-disease.

Watch my conversation with another amazing guest where we discuss the effects and medical uses of recreational drugs https://nebula.tv/videos/medlife-crisis-the-worst-censorship…david-nutt.

It’s the best way to support this channel. Thank you!

A ground fault normally occurs in one of two ways: by accidental contact of an energized conductor with normally grounded metal, or as a result of an insulation failure of an energized conductor. When an insulation failure occurs, the energized conductor contacts normally non-current-carrying metal, which is bonded to a part of the equipment-grounding conductor.

In a solidly grounded system, the fault current returns to the source primarily along the equipment-grounding conductors, with a small part using parallel paths such as building steel or piping.

If the ground return impedance were as low as that of the circuit conductors, ground fault currents would be high, and the normal phase-overcurrent protection would clear them with little damage.