Toggle light / dark theme

Whether the light in our living spaces is on or off can be regulated in everyday life simply by reaching for the light switch. However, when the space for the light is shrunk to a few nanometers, quantum mechanical effects dominate, and it is unclear whether there is light in it or not. Both can even be the case at the same time, as scientists from the Julius-Maximilians-Universität Würzburg (JMU) and the University of Bielefeld show in the journal Nature Physics (“Identifying the quantum fingerprint of plasmon polaritons”).

“Detecting these exotic states of quantum physics on the size scales of electrical transistors could help in the development of optical quantum technologies of future computer chips,” explains Würzburg professor Bert Hecht. The nanostructures studied were produced in his group.

The technology of our digital world is based on the principle that either a current flows or it does not: one or zero, on or off. Two clear states exist. In quantum physics, on the other hand, it is possible to disregard this principle and create an arbitrary superposition of the supposed opposites. This increases the possibilities of transmitting and processing information many times over. Such superposition states have been known for some time, especially for the particles of light, so-called photons, and are used in the detection of gravitational waves.

YouTube CEO Susan Wojcicki is stepping down after nearly a decade in the role, the company shared in a blog post Thursday.

Wojcicki told staff she’s departing the top job to “start a new chapter focused on my family, health, and personal projects I’m passionate about.” She’ll continue to help advise the company, she said.

She’ll be replaced by Neal Mohan, who has been YouTube’s chief product officer since 2015 and helped launch the company’s TikTok competitor, Shorts. Vox’s Peter Kafka first reported the news.

For years, researchers have searched for the working principles of self-assembly that can build a cell (complex biological organism) as well as a crystal (far simpler inorganic material) in the same way.

Now, a team of scientists in Turkey has demonstrated the fundamental principles of a universal self-assembly process acting on a range of materials starting from a few atoms-large quantum dots up to nearly 100 trillion atoms-large human cells. Their method is highlighted in Nature Physics.

“To initiate self-assembly, either you force the system to deliver a specific outcome, or you use its inner dynamics to your advantage for universal outcomes. We followed the second approach,” says Dr. Serim Ilday of Bilkent University-UNAM, who lead the study.

The low temperatures and high ultraviolet (UV) radiation levels at the surface of Mars today currently preclude the survival of life anywhere except perhaps in limited subsurface niches.

Several ideas for making the Martian surface more habitable have been put forward previously, but they all involve massive environmental modification that will be well beyond human capability for the foreseeable future. Here we present a new approach to this problem. We show that widespread regions of the surface of Mars could be made habitable to photosynthetic life in the future via a solid-state analogue to Earth’s atmospheric greenhouse effect.

Specifically, we demonstrate via experiments and modelling that under Martian environmental conditions, a 2 to 3-cm thick layer of silica (SiO2) aerogel will simultaneously transmit sufficient visible light for photosynthesis, block hazardous ultraviolet radiation, and raise temperatures underneath permanently to above the melting point of water, without the need for any internal heat source. Placing silica aerogel shields over sufficiently ice-rich regions of the Martian surface could therefore allow photosynthetic life to survive there with minimal subsequent intervention.

While most of us take the ground beneath our feet for granted, written within its complex layers, like the pages of a book, is Earth’s history. Our history.

Research shows there are little-known chapters in that history, deep within Earth’s past. In fact, Earth’s inner core appears to have another even more inner core within it.

“Traditionally we’ve been taught the Earth has four main layers: the crust, the mantle, the outer core and the inner core,” Australian National University geophysicist Joanne Stephenson explained in 2021.

A single dose of psilocybin, the active compound in “magic mushrooms,” given to mice prompted a long-lasting increase in the connections between neurons.

In a new study, Yale researchers show that a single dose of psilocybin given to mice prompted an immediate and long-lasting increase in connections between neurons. The findings are published July 5 in the journal Neuron.

University of Cambridge, working with colleagues from Austria, found a new way to make a possible replacement for rare-earth magnets: tetrataenite, a ‘cosmic magnet’ that takes millions of years to develop naturally in meteorites.

Previous attempts to make tetrataenite in the laboratory have relied on impractical, extreme methods. But the addition of a common element — phosphorus — could mean that it’s possible to make tetrataenite artificially and at scale, without any specialised treatment or expensive techniques.

The results are reported in the journal Advanced Science. A patent application on the technology has been filed by Cambridge Enterprise, the University’s commercialisation arm, and the Austrian Academy of Sciences.


Researchers have discovered a potential new method for making the high-performance magnets used in wind turbines and electric cars without the need for rare earth elements, which are almost exclusively sourced in China.