Toggle light / dark theme

One Health Approaches To Prevent Zoonoses & Antimicrobial Resistance — Dr. Keith Sumption, Ph.D. — Chief Veterinary Officer and Leader of the Animal Health Program; Director, Joint Centre for Zoonoses and Anti-Microbial Resistance (CJWZ), Food and Agriculture Organization of the United Nations (FAO)


Dr. Keith Sumption, Ph.D. is Chief Veterinary Officer and Leader of the Animal Health Program at the Food and Agriculture Organization of the United Nations (FAO — https://www.fao.org/home/en) as well as their Director of the Joint Centre for Zoonoses and Anti-Microbial Resistance (CJWZ).

The Food and Agriculture Organization of the United Nations is an international organization that leads international efforts to defeat hunger and improve nutrition and food security. The FAO comprises 195 members and helps governments and development agencies coordinate their activities to improve and develop agriculture, forestry, fisheries, and land and water resources. It also conducts research, provides technical assistance to projects, operates educational and training programs, and collects agricultural output, production, and development data.

The fruit fly larva connectome showed circuit features that were strikingly reminiscent of prominent and powerful machine learning architectures. “Some of the architectural features observed in the Drosophila larval brain, including multilayer shortcuts and prominent nested recurrent loops, are found in state-of-the-art artificial neural networks, where they can compensate for a lack of network depth and support arbitrary, task-dependent computations,” they wrote. The team expects continued study will reveal even more computational principles and potentially inspire new artificial intelligence systems. “What we learned about code for fruit flies will have implications for the code for humans,” Vogelstein said. “That’s what we want to understand—how to write a program that leads to a human brain network.”

The animal brain consists of tens of billions of neurons or nerve cells that perform complex tasks like processing emotions, learning, and making judgments by communicating with each other via neurotransmitters. These small signaling molecules diffuse—move from high to low concentration regions—between neurons, acting as chemical messengers.

Scientists believe that this diffusive motion might be at the heart of the brain’s superior function. Therefore, they have aimed to understand the role of specific neurotransmitters by detecting their release in the brain using amperometric and microdialysis methods. However, these methods provide insufficient information, necessitating better sensing techniques.

To this end, scientists developed an optical imaging method wherein protein probes change their fluorescence intensity upon detecting a specific . Recently, a group of researchers from Shibaura Institute of Technology in Japan led by Professor Yasuo Yoshimi has taken this idea forward. They have successfully synthesized fluorescent molecularly imprinted polymeric nanoparticles (fMIP-NPs) that serve as probes to detect specific neurotransmitters–serotonin, dopamine, and acetylcholine.

A team of researchers led by the University of Innsbruck have observed a quantum tunneling effect in experiments that build off 15 years of research into such reactions and marks the slowest charged particle reaction ever observed until now. But while such chemical reactions have only been theoretical up to this point, can it be achieved in real-world experiments?

“It requires an experiment that allows very precise measurements and can still be described quantum-mechanically,” said Dr. Roland Wester, who is a professor of theoretical *physics at the University of Innsbruck, and lead author of the study. “The idea came to me 15 years ago in a conversation with a colleague at a conference in the United States.”

Sand dunes are not uncommon on the surface of Mars. However, during observations to see how the frost from winter melts on the planet, the Mars Reconnaissance Orbiter captured images of strange Martian dunes that appear almost completely circular. This almost perfectly circular appearance is unusual, which has sparked the interest of NASA and astronomers worldwide.

According to NASA’s page detailing the image, the strange Martian dunes appear to have steeper sides on the south side. NASA says this is because the windows on Mars generally move towards the south. Of course, they can vary, but the effect is clearly seen in these images, where the southern side of the circular dunes is steeper.

The images of these strange Martian dunes were made possible thanks to the High Resolution Imaging Science Experiment (HiRISE), an instrument on the MRO. HiRISE is the largest and the most powerful camera that humanity has ever sent to another planet, and it has delivered exceptional observations about the surface of the Red Planet.

One of the most fundamental rules of physics, undisputed since Einstein first laid it out in 1905, is that no information-carrying signal of any type can travel through the Universe faster than the speed of light. Particles, either massive or massless, are required for transmitting information from one location to another, and those particles are mandated to travel either below (for massive) or at (for massless) the speed of light, as governed by the rules of relativity. You might be able to take advantage of curved space to allow those information-carriers to take a short-cut, but they still must travel through space at the speed of light or below.

Since the development of quantum mechanics, however, many have sought to leverage the power of quantum entanglement to subvert this rule. Many clever schemes have been devised in a variety of attempts to transmit information that “cheats” relativity and allows faster-than-light communication after all. Although it’s an admirable attempt to work around the rules of our Universe, every single scheme has not only failed, but it’s been proven that all such schemes are doomed to failure. Even with quantum entanglement, faster-than-light communication is still an impossibility within our Universe. Here’s the science of why.

Walk through a maze of mirrors, you’ll soon come face to face with yourself. Your nose meets your nose, your fingertips touch at their phantom twins, stopped abruptly by a boundary of glass.

Most of the time, a reflection needs no explanation. The collision of light with the mirror’s surface is almost intuitive, its rays set on a new path through space with the same ease as a ball bouncing off a wall.

For over sixty years, however, physicists have considered a subtly different kind of reflection. One that occurs not through the three dimensions of space, but in time.

While attending an event called AI in Focus — Digital Kickoff, Chief Technology Officer at Microsoft Germany, Andreas Braun, spoke about GPT-4 and its upcoming unveiling (via Heise). According to Braun, the next iteration of GPT will be shown off next week and it will allow users to create new types of AI-generated content.

We will introduce GPT-4 next week, where we have multimodal models that will offer completely different possibilities – for example, videos.