Elon Musk’s bet on the incoming Trump administration is starting to pay off handsomely, with autonomous vehicle permits heading Tesla’s way.
Google is committing $20 million in cash and $2 million in cloud credits to a new funding initiative designed to help scientists and researchers unearth the next great scientific breakthroughs using artificial intelligence (AI).
The announcement, made by Google DeepMind co-founder and CEO Demis Hassabis during a fireside chat at the closed-door AI for Science Forum in London today, feeds into a broader push by Big Tech to curry favor with young innovators and startups, a strategy that has included acqui-hires, equity investments, and cloud partnerships — some of which has attracted the attentions of regulators.
This latest announcement, via Google’s 19-year-old philanthropic arm Google.org, is different in that it centers on non-equity funding for academic and non-for-profit institutions globally. But similar to other Big Tech funding and partnership initiatives, this will go some way toward helping Google ingratiate itself with some of the leading scientific minds, through direct cash injections and by providing infrastructure to power their projects. In turn, this positions Google well to acquire future customers — particularly those currently on the cusp of doing great things, working on projects that require significant AI tooling and compute, which Google can provide.
Scientists develop incredible gravity-powered system that could change the way we use solar panels: ‘It doesn’t consume any electricity’
Posted in solar power, sustainability | Leave a Comment on Scientists develop incredible gravity-powered system that could change the way we use solar panels: ‘It doesn’t consume any electricity’
Researchers in Saudi Arabia have developed a solution to overheating solar panels that requires zero electricity. This development can also double as a method for atmospheric water collection, an important practice in dry regions, as relayed by SciTechDaily.
The research, led by King Abdullah University of Science and Technology professor Qiaoqiang Gan, is important because it addresses the problem of overheating solar panels in particularly hot and sunny regions, such as Saudi Arabia.
Do you have a telescope? Would you like to see some of the same night sky objects from the ground that Hubble has from space? We invite you to commemorate Hubble’s 35th anniversary by accepting our year-long stargazing challenge. On a clear night, find a safe location with a dark sky away from bright lights, point your telescope skyward, and with the help of star and finder charts, gaze upon some of the same iconic nebulae and galaxies Hubble has observed. How many of them can you find?
The weird thermodynamics found in time crystals could be harnessed to store energy in a quantum battery-like device.
Astounding simulation shows magnetic fields create fluffy, not flat, accretion disks around supermassive black holes, altering our understanding of black hole dynamics.
A team of astrophysicists from Caltech has achieved a groundbreaking milestone by simulating the journey of primordial gas from the early universe to its incorporation into a disk of material feeding a supermassive black hole. This innovative simulation challenges theories about these disks that have persisted since the 1970s and opens new doors for understanding the growth and evolution of black holes and galaxies.
Researchers at the Swiss Federal Institute of Technology (ETH) in Zurich have developed the first-ever fully functional mechanical qubit. This incredible quantum innovation is a two-in-one system combining the abilities of a mechanical oscillator and a superconducting qubit.
Compared to the traditional virtual qubits that are created using multiple physical qubits and error-correcting codes to protect quantum information, mechanical qubits are real, physical systems that don’t need this extra layer of protection.
Sending an object to another star is still the stuff of science fiction. But some concrete missions could get us at least part way there. These “interstellar precursor missions” include a trip to the solar gravitational lens point at 550 AU from the sun—farther than any artificial object has ever been, including Voyager.
To get there, we’ll need plenty of new technologies, and a recent paper presented at the 75th International Astronautical Congress in Milan this month looks at one of those potential technologies—electric propulsion systems, otherwise known as ion drives.
The paper aimed to assess when any existing ion drive technology could port a large payload on one of several trajectories, including a trip around Jupiter, one visiting Pluto, and even one reaching that fabled solar gravitational lens. To do so, they specified an “ideal” ion drive with characteristics that enabled optimal values for some of the system’s physical characteristics.
We might like to think of ourselves as autonomous entities but, in reality, we’re more like walking ecosystems, teeming with bacteria, viruses, and other microbes. It turns out that differences in these microbes might be as crucial to evolution and natural variation as genetic mutations are.
This novel perspective was discussed in a recent publication by Seth Bordenstein, director of Penn State’s One Health Microbiome Center, who is a professor of biology and entomology and holds the Dorothy Foehr Huck and J. Lloyd Huck Endowed Chair in Microbiome Sciences.
He, along with 21 colleagues from around the globe, collectively known as the Holobiont Biology Network, propose that understanding the relationships between microbes and their hosts will lead to a more profound understanding of biological variation.