Toggle light / dark theme

Designing, building, and launching a spacecraft is hugely expensive. That’s why NASA missions to Mars are designed with the hope that they’ll last as long as possible — like the famous Opportunity rover which was supposed to last for 90 days and managed to keep going for 15 years. The longer a mission can keep running, the more data it can collect, and the more we can learn from it.

That’s true for the orbiters which travel around Mars as well as the rovers which explore its surface, like the Mars Odyssey spacecraft which was launched in 2001 and has been in orbit around Mars for more than 20 years. But the orbiter can’t keep going forever as it will eventually run out of fuel, so figuring out exactly how much fuel is left is important — but it also turned out to be more complicated than the NASA engineers were expecting.

Odyssey started out with nearly 500 pounds of hydrazine fuel, though last year it looked as if the spacecraft was running much lower on fuel than had been predicted.

NASA’s sun-touching Parker Solar Probe spacecraft will celebrate St. Patrick’s Day (March 17) by making another close approach to our star. While people all over Earth enjoy a cold beer, the spacecraft will brave blisteringly hot temperatures as high as 2,500 degrees Fahrenheit (1,400 degrees Celsius) as it makes its 15th close approach to the sun, or perihelion.

According to NASA’s Parker Solar Probe website, (opens in new tab) the exact time of the close approach will be 4:30 p.m. EDT (2030 GMT) when the spacecraft comes to within around 5.3 million miles (8.5 million km) of the sun’s surface, the photosphere.

Researchers at the University of New South Wales, Sydney, have developed a flexible 3D bioprinter that can layer organic material directly onto organs or tissue. Unlike other bioprinting approaches, this system would only be minimally invasive, perhaps helping to avoid major surgeries or the removal of organs. It sounds like the future — at least in theory — but the research team warns it’s still five to seven years away from human testing.

The printer, dubbed F3DB, has a soft robotic arm that can assemble biomaterials with living cells onto damaged internal organs or tissues. Its snake-like flexible body would enter the body through the mouth or anus, with a pilot / surgeon guiding it toward the injured area using hand gestures. In addition, it has jets that can spray water onto the target area, and its printing nozzle can double as an electric scalpel. The team hopes its multifunctional approach could someday be an all-in-one tool (incising, cleaning and printing) for minimally invasive operations.

The F3DB’s robotic arm uses three soft-fabric-bellow actuators using a hydraulic system composed of “DC-motor-driven syringes that pump water to the actuators,” as summarized by IEEE Spectrum. Its arm and flexible printing head can each move in three degrees of freedom (DOFs), similar to desktop 3D printers. In addition, it includes a flexible miniature camera to let the operator view the task in real time.

In recent years, a group of Hungarian researchers have made headlines with a bold claim. They say they’ve discovered a new particle — dubbed X17 — that requires the existence of a fifth force of nature.

The researchers weren’t looking for the new particle, though. Instead, it popped up as an anomaly in their detector back in 2015 while they were searching for signs of dark matter. The oddity didn’t draw much attention at first. But eventually, a group of prominent particle physicists working at the University of California, Irvine, took a closer look and suggested that the Hungarians had stumbled onto a new type of particle — one that implies an entirely new force of nature.

Then, in late 2019, the Hungarian find hit the mainstream — including a story featured prominently on CNN — when they released new results suggesting that their signal hadn’t gone away. The anomaly persisted even after they changed the parameters of their experiment. They’ve now seen it pop up in the same way hundreds of times.