Menu

Blog

Page 3786

Aug 16, 2022

Powerful Radio Pulses Originating Deep in the Cosmos Probe Hidden Matter Around Galaxies

Posted by in categories: mapping, space

Powerful cosmic radio pulses originating deep in the universe can be used to study hidden pools of gas cocooning nearby galaxies, according to a new study that was published last month in the journal Nature Astronomy.

So-called fast radio bursts, or FRBs, are pulses of radio waves that typically originate millions to billions of light-years away. (Radio waves are electromagnetic radiation like the light we see with our eyes but have longer wavelengths and lower frequencies). The first FRB was discovered in 2007, and since then, hundreds more have been detected. In 2020, Caltech’s STARE2 instrument (Survey for Transient Astronomical Radio Emission 2) and Canada’s CHIME (Canadian Hydrogen Intensity Mapping Experiment) detected a massive FRB that went off in our own Milky Way galaxy. Those earlier findings helped confirm the theory that the energetic events most likely originate from dead, magnetized stars called magnetars.

As more and more FRBs roll in, scientists are now investigating how they can be used to study the gas that lies between us and the bursts. Specifically, they would like to use the FRBs to probe halos of diffuse gas that surround galaxies. As the radio pulses travel toward Earth, the gas enveloping the galaxies is expected to slow the waves down and disperse the radio frequencies. In the new study, the research team looked at a sample of 474 distant FRBs detected by CHIME, which has discovered the most FRBs to date. They showed that the subset of two dozen FRBs that passed through galactic halos were indeed slowed down more than non-intersecting FRBs.

Aug 16, 2022

This super-fast jet train would tap into a whole new field of physics

Posted by in categories: physics, transportation

The company unveiled a new vehicle and accompany line that it is building between two cities in Alberta, Canada.

Aug 16, 2022

Perseid meteor shower generates early ‘shooting stars’ (video)

Posted by in category: space

A few bright streakers flew by NASA’s meteor cameras, so get out now before the full moon overtakes the peak.


Look up now and you might spot some early shooting stars.

While the 2022 Perseid meteor shower is expected to peak between Aug. 11 and 12, NASA has already spotted some early arrivals.

Aug 16, 2022

Scientists may have solved Stephen Hawking’s black hole paradox

Posted by in categories: cosmology, quantum physics

Researchers may have solved Professor Stephen Hawking’s famous black hole paradox—a mystery that has puzzled scientists for almost half a century.

According to two new studies, something called “quantum hair” is the answer to the problem.

In the first paper, published in the journal Physical Review Letters, researchers demonstrated that are more complex than originally thought and have gravitational fields that hold information about how they were formed.

Aug 16, 2022

Quantum hair and black hole information

Posted by in categories: cosmology, particle physics, quantum physics

Circa 2022


We report on two extensions of the traditional analysis of low-dimensional structures in terms of low-dimensional quantum mechanics. On one hand, we discuss the impact of thermodynamics in one or two dimensions on the behavior of fermions in low-dimensional systems. On the other hand, we use both quantum wells and interfaces with different effective electron or hole mass to study the question when charge carriers in interfaces or layers exhibit two-dimensional or three-dimensional behavior.

Aug 16, 2022

Inter-dimensional effects in nano-structures

Posted by in categories: nanotechnology, particle physics, quantum physics

Circa 2012 o.o!!!


We report on two extensions of the traditional analysis of low-dimensional structures in terms of low-dimensional quantum mechanics. On one hand, we discuss the impact of thermodynamics in one or two dimensions on the behavior of fermions in low-dimensional systems. On the other hand, we use both quantum wells and interfaces with different effective electron or hole mass to study the question when charge carriers in interfaces or layers exhibit two-dimensional or three-dimensional behavior.

Aug 16, 2022

Phonon-mediated Migdal effect in semiconductor detectors

Posted by in category: cosmology

The Migdal effect inside detectors provides a new possibility of probing the sub-GeV dark matter (DM) particles. While there has been well-established methods treating the Migdal effect in isolated atoms, a coherent and complete description of the valence electrons in a semiconductor is still absent. The bremstrahlunglike approach is a promising attempt, but it turns invalid for DM masses below a few tens of MeV. In this paper, we lay out a framework where phonon is chosen as an effective degree of freedom to describe the Migdal effect in semiconductors. In this picture, a valence electron is excited to the conduction state via exchange of a virtual phonon, accompanied by a multiphonon process triggered by an incident DM particle. Under the incoherent approximation, it turns out that this approach can effectively push the sensitivities of the semiconductor targets further down to the MeV DM mass region.

Aug 16, 2022

The Senate’s plan to cap insulin costs leaves millions of diabetics without relief

Posted by in category: biotech/medical

More than 1 in 5 people on private insurance pay more $35 a month for insulin. This bill won’t help them.

Aug 16, 2022

Future of mining 2040

Posted by in category: futurism

As the world’s values shift, how do miners demonstrate theirs? Find our latest insights by visiting https://www.ey.com/en_gl/mining-metals.

Follow us on:
Twitter: https://twitter.com/EYnews.
LinkedIn: https://www.linkedin.com/company/ernstandyoung/
Facebook: https://www.facebook.com/EY/
Instagram: https://www.instagram.com/ey_global/

Aug 16, 2022

Why A Looming Copper Shortage Has Big Consequences For The Green Economy

Posted by in categories: economics, energy, sustainability, transportation

Copper prices have surged in 2021. The base metal remains in high demand, much thanks to its need in green energy projects and electric cars. In May 2021, commodities analysts at Goldman Sachs called copper ‘the new oil.’ That’s because electric cars need several times more copper than their gas-powered counterparts. And power grids getting electricity from wind, solar and hydro sources also need copper—much more than the industry is currently producing. Here’s how copper became so important to the world economy and the green energy revolution.

» Subscribe to CNBC: https://cnb.cx/SubscribeCNBC
» Subscribe to CNBC TV: https://cnb.cx/SubscribeCNBCtelevision.

Continue reading “Why A Looming Copper Shortage Has Big Consequences For The Green Economy” »