Toggle light / dark theme

Ray Kurzweil — The Singularity IS NEAR — part 2! We’ll Reach IMMORTALITY by 2030
Get ready for an exciting journey into the future with Ray Kurzweil’s The Singularity IS NEAR — Part 2! Join us as we explore the awe-inspiring possibilities of what could be achieved before 2030, including the potential for humans to reach immortality. We’ll dive into the incredible technology that could help us reach this singularity and uncover what the implications of achieving immortality could be. Don’t miss out on this fascinating insight into the future of mankind!
In his book “The Singularity Is Near”, futurist and inventor Ray Kurzweil argues that we are rapidly approaching a point in time known as the singularity. This refers to the moment when artificial intelligence and other technologies will become so advanced that they surpass human intelligence and change the course of human evolution forever.

Kurzweil predicts that by 2030, we will reach a crucial milestone in our technological progress: immortality. He bases this prediction on his observation of exponential growth in various fields such as genetics, nanotechnology, and robotics, which he believes will culminate in the creation of what he calls “nanobots”.

These tiny robots, according to Kurzweil, will be capable of repairing and enhancing our bodies at the cellular level, effectively making us immune to disease, aging, and death. Additionally, he believes that advances in brain-computer interfaces will allow us to upload our consciousness into digital form, effectively achieving immortality.

Kurzweil’s ideas have been met with both excitement and skepticism. Some people see the singularity as a moment of great potential, a time when we can overcome our biological limitations and create a better future for humanity. Others fear the singularity, believing that it could lead to the end of humanity as we know it.

Are you ready to discover the potential technological developments that could shape the world we live in and get a glimpse of what life in the year 2100 might be like? As we approach the turn of the century, the world is expected to undergo significant changes and challenges. In this video, we will show you how the merging of humans and artificial intelligence can help solve any problem that comes our way and even predict the future.

Imagine being able to access the thoughts, memories, and emotions of billions of people through the hive mind concept. This will provide a unique way of experiencing other people’s lives and gaining new perspectives. Hyper-personalized virtual realities customized to fulfill every individual’s desire will be the norm. Users will enter a world where their every wish and fantasy constantly comes to life, maximizing their happiness, joy, and pleasure.

Education as we know it will change forever with the ability to download skills and knowledge directly into a person’s brain. People will be able to learn new skills and gain knowledge at unprecedented speeds, becoming experts in any field within seconds. The discovery and use of room-temperature superconductors will revolutionize many industries and transform the world’s infrastructure, especially in transportation. By 2100, this technology will be a reality and used in numerous industries.

Join us until the end of the video, where the final development will really raise your eyebrows. The future is exciting, and it’s happening now. Don’t miss out on this incredible journey!

This show is sponsored by Numerai, please visit them here with our sponsor link (we would really appreciate it) http://numer.ai/mlst.

Prof. Karl Friston recently proposed a vision of artificial intelligence that goes beyond machines and algorithms, and embraces humans and nature as part of a cyber-physical ecosystem of intelligence. This vision is based on the principle of active inference, which states that intelligent systems can learn from their observations and act on their environment to reduce uncertainty and achieve their goals. This leads to a formal account of collective intelligence that rests on shared narratives and goals.

To realize this vision, Friston suggests developing a shared hyper-spatial modelling language and transaction protocol, as well as novel methods for measuring and optimizing collective intelligence. This could harness the power of artificial intelligence for the common good, without compromising human dignity or autonomy. It also challenges us to rethink our relationship with technology, nature, and each other, and invites us to join a global community of sense-makers who are curious about the world and eager to improve it.

Pod version: https://podcasters.spotify.com/pod/show/machinelearningstree…on-e208f50

Go to https://brilliant.org/IsaacArthur/ to get a 30-day free trial + the first 200 people will get 20% off their annual subscription.
If the end of the world is nigh, it may be too late to avert a catastrophe. So what can we do to mitigate the damage or recover after a cataclysm comes?

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

▬ Cataclysm Index ▬▬▬▬▬▬▬▬▬▬
0:00 — Intro.
03:43 — Nuclear War.
11:24 — Asteroid.
15:34 — Supernova.
18:34 — Gamma Ray Burst.
21:51 — Massive Climate Shift.
23:15 — Snowball Earth.
24:34 — Super Volcano.
28:51 — BioWar.
30:46 — Zombie Apocalypse.
32:25 — Robots / AI
35:10 — Alien Invasions.

Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version: https://soundcloud.com/isaac-arthur-148927746/journey-to-alpha-centauri.

LLMs stands for Large Language Models. These are advanced machine learning models that are trained to comprehend massive volumes of text data and generate natural language. Examples of LLMs include GPT-3 (Generative Pre-trained Transformer 3) and BERT (Bidirectional Encoder Representations from Transformers). LLMs are trained on massive amounts of data, often billions of words, to develop a broad understanding of language. They can then be fine-tuned on tasks such as text classification, machine translation, or question-answering, making them highly adaptable to various language-based applications.

LLMs struggle with arithmetic reasoning tasks and frequently produce incorrect responses. Unlike natural language understanding, math problems usually have only one correct answer, making it difficult for LLMs to generate precise solutions. As far as it is known, no LLMs currently indicate their confidence level in their responses, resulting in a lack of trust in these models and limiting their acceptance.

To address this issue, scientists proposed ‘MathPrompter,’ which enhances LLM performance on mathematical problems and increases reliance on forecasts. MathPrompter is an AI-powered tool that helps users solve math problems by generating step-by-step solutions. It uses deep learning algorithms and natural language processing techniques to understand and interpret math problems, then generates a solution explaining each process step.

Experience tells us that it is much easier to extend median lifespan than maximum lifespan. Katcher’s trial of E5 in 8 rats breaks this expectation. The last of Harold Katcher’s rats has died, and she outlived her sisters by 7 months.

A new mechanism that gives rise to superconductivity in a material where the speed of electrons is almost zero has been discovered by scientists at The University of Texas at Dallas and their partners at The Ohio State University. This breakthrough could pave the way for the development of novel superconductors.

The results of their study, which was recently published in the journal Nature, describe a novel approach to calculate electron speed. This study also represents the first instance where quantum geometry has been recognized as the primary contributing mechanism to superconductivity in any material.

The material the researchers studied is twisted bilayer graphene.

There are those who are alarmed at even this minute form of self-awareness in robots, for they fear that this could pave the way for AI taking over humankind. Such fears are unfounded, as they are a long way off from becoming self-aware enough to have self-will and volition.

The jury is still out on the extent to which we humans can claim to be self-aware, apart from being aware of one’s body and its functions. Every one of us is at a different level of self-awareness, and most of us are at the very infancy of this evolutionary journey that could one day lead to us becoming aware of not only the individual self but also of the Supreme Self, Atman.

There’s an old magic trick known as the miser’s dream, where the magician appears to pull coins from thin air. Australian scientists say they can now generate electricity out of thin air with the help of some enzymes. The enzyme reacts to hydrogen in the atmosphere to generate a current.

They learned the trick from bacteria which are known to use hydrogen for fuel in inhospitable environments like Antarctica or in volcanic craters. Scientists knew hydrogen was involved but didn’t know how it worked until now.

The enzyme is very efficient and can even work on trace amounts of hydrogen. The enzyme can survive freezing and temperature up to 80 °C (176 °F). The paper seems more intent on the physical mechanisms involved, but you can tell the current generated is minuscule. We don’t expect to see air-powered cell phones anytime soon. Then again, you have to start somewhere, and who knows where this could lead?