Menu

Blog

Page 3731

Aug 25, 2022

‘Synthetic’ mouse embryo with brain and beating heart grown from stem cells

Posted by in categories: biotech/medical, neuroscience

Researchers from the University of Cambridge and Caltech have created model mouse embryos from stem cells—the body’s master cells, which can develop into almost any cell type in the body—that have beating hearts, as well as the foundations for a brain and all of the other organs in the mouse body.

The results are the culmination of more than a decade of research, and they could help researchers understand why some embryos fail while others go on to develop into a fetus as part of a healthy pregnancy. Additionally, the results could be used to guide repair and development of synthetic human organs for transplantation.

The research was conducted in the laboratory of Magdalena Zernicka-Goetz, Bren Professor of Biology and Biological Engineering at Caltech. Zernicka-Goetz is also a professor of mammalian development and in Cambridge’s Department of Physiology, Development and Neuroscience. A paper describing the breakthrough appears in the journal Nature on August 25.

Aug 25, 2022

Researchers build embryo-like structures from human stem cells

Posted by in category: biotech/medical

Research on human embryos is vital to understanding the earliest stages of human development. Currently, this research is conducted on surplus embryos willingly donated by individuals who have undergone in vitro fertilization. Nevertheless, this research is limited by the availability of embryos and strict international ethical time limits on how long an embryo is allowed to develop in the laboratory (14 days maximum.)

Now, Caltech researchers have created embryo-like structures out of human stem cells. In contrast to natural embryos that are formed by a combination of sperm and egg, these structures are formed by combining so-called , which have the ability to develop into specialized types of cells. Though these embryo-like structures have some key differences from real embryos, the technology to create them will be critical in answering open questions about without the need for donated embryos.

The research was conducted in the laboratory of Magdalena Zernicka-Goetz, Bren Professor of Biology and Biological Engineering at Caltech, and is described in a paper appearing in the journal Nature Communications on September 21.

Aug 25, 2022

The Internet of Things needs ultra-compact supercapacitors

Posted by in categories: energy, health, internet

Increased demand for super tiny electronic sensors coming from healthcare, environmental services and the Internet of Things is prompting a search for equally tiny ways to power these sensors. A review of the state of ultracompact supercapacitors, or “micro-supercapacitors,” concludes there is still a lot of research to be done before these devices can deliver on their promise.

The review appeared in the journal Nano Research Energy.

The explosion of demand in recent years for miniaturized , such as health monitors, environmental sensors and wireless communications technologies has in turn driven demand for components for those devices that have ever smaller size and weight, with lower energy consumption, and all of this at cheaper prices.

Aug 25, 2022

Integrated 3D printing of flexible electroluminescent devices and soft robots

Posted by in categories: 3D printing, robotics/AI

Flexible electroluminescent devices are usually arduous to create. Liu et al report a 3D printing strategy to produce flexible and robust electroluminescent devices that can be integrated with soft robots for camouflage applications.

Aug 25, 2022

Swin Transformer supports 3-billion-parameter vision models that can train with higher-resolution images for greater task applicability

Posted by in category: robotics/AI

Early last year, our research team from the Visual Computing Group introduced Swin Transformer, a Transformer-based general-purpose computer vision architecture that for the first time beat convolutional neural networks on the important vision benchmark of COCO object detection and did so by a large margin. Convolutional neural networks (CNNs) have long been the architecture of choice for classifying images and detecting objects within them, among other key computer vision tasks. Swin Transformer offers an alternative. Leveraging the Transformer architecture’s adaptive computing capability, Swin can achieve higher accuracy. More importantly, Swin Transformer provides an opportunity to unify the architectures in computer vision and natural language processing (NLP), where the Transformer has been the dominant architecture for years and has benefited the field because of its ability to be scaled up.

So far, Swin Transformer has shown early signs of its potential as a strong backbone architecture for a variety of computer vision problems, powering the top entries of many important vision benchmarks such as COCO object detection, ADE20K semantic segmentation, and CelebA-HQ image generation. It has also been well-received by the computer vision research community, garnering the Marr Prize for best paper at the 2021 International Conference on Computer Vision (ICCV). Together with works such as CSWin, Focal Transformer, and CvT, also from teams within Microsoft, Swin is helping to demonstrate the Transformer architecture as a viable option for many vision challenges. However, we believe there’s much work ahead, and we’re on an adventurous journey to explore the full potential of Swin Transformer.

In the past few years, one of the most important discoveries in the field of NLP has been that scaling up model capacity can continually push the state of the art for various NLP tasks, and the larger the model, the better its ability to adapt to new tasks with very little or no training data. Can the same be achieved in computer vision, and if so, how?

Aug 25, 2022

Experts reveal how BRAIN CHIPS could be used to control crime

Posted by in categories: computing, neuroscience

With recent significant advances in brain implants, MailOnline talks to law professor Burkhard Schafer about how neurotechnologies could influence criminal trials in the future.

Aug 25, 2022

New nanosensor gives unprecedented look at dopamine release

Posted by in category: neuroscience

Astronomers build new telescopes and peer at the night sky to see what they might find. Janelia Group Leader Abraham Beyene takes a similar approach when looking at the cells that make up the human brain.

Beyene and his team design and synthesize new types of highly sensitive biosensors they use to peer at to see what they can learn.

Continue reading “New nanosensor gives unprecedented look at dopamine release” »

Aug 25, 2022

Scientists use stem cells to create synthetic mouse embryos

Posted by in categories: biotech/medical, futurism

Scientists have created “synthetic” mouse embryos from stem cells without a dad’s sperm or a mom’s egg or womb.

The lab-created embryos mirror a natural mouse embryo up to 8 ½ days after fertilization, containing the same structures, including one like a beating heart.

In the near term, researchers hope to use these so-called embryoids to better understand early stages of development and study mechanisms behind disease without the need for as many lab animals. The feat could also lay the foundation for creating synthetic human embryos for research in the future.

Aug 25, 2022

Oldest human relative walked upright 7 mn years ago: study

Posted by in category: futurism

When the skull of Sahelanthropus tchadensis was discovered in Chad in 2001, it pushed back the age of the oldest known representative species of humanity by…

Aug 25, 2022

First underground radar images from Mars Perseverance Rover reveal some surprises

Posted by in category: space

After a tantalizing year-and-a-half wait since the Mars Perseverance Rover touched down on our nearest planetary neighbor, new data is arriving—and bringing with it a few surprises.

The rover, which is about the size of car and carries seven , has been probing Mars’ 30-mile-wide Jezero crater, once the site of a lake and an ideal spot to search for evidence of ancient life and information about the planet’s geological and climatic past.

In a paper published today in the journal Science Advances, a research team led by UCLA and the University of Oslo reveals that beneath the crater’s floor, observed by the rover’s ground-penetrating radar instrument, are unexpectedly inclined. The slopes, thicknesses and shapes of the inclined sections suggest they were either formed by slowly cooling lava or deposited as sediments in the former lake.