Toggle light / dark theme

A few select users will now be able to enjoy Google Maps’ immersive view, according to a blog by the company published last month. The new feature is meant to allow users to reimagine how they explore and navigate, while helping them make more sustainable choices.

“Immersive view is an entirely new way to explore a place — letting you feel like you’re right there, even before you visit. Using advances in AI and computer vision, immersive view fuses billions of Street View and aerial images to create a rich, digital model of the world. And it layers helpful information on top like the weather, traffic, and how busy a place is,” said Chris Phillips, VP & General Manager, Geo, in the blog.

The Hubble Space Telescope’s remarkable observations shed light on the seasonal shifts and atmospheric conditions of Jupiter and Uranus.

The Hubble Space Telescope has been fundamental in unraveling the mysteries of our solar system. The telescope is a celestial weather observer that studies the changing atmosphere of giant gaseous planets. By observing climatic variations, scientists are unlocking new understanding about the dynamic weather systems of these gas giants, paving the way for a deeper understanding of our solar system.

Recently, it disclosed exquisite details about the changing weather patterns and seasonal shifts on Jupiter and Uranus.


NASA, ESA, STScI, Amy Simon, and Michael H. Wong, Joseph DePasquale.

The researchers observed it stimulated light emission, which Einstein predicted in 1916, in single photons for the first time.

A team of researchers from the University of Basel and the University of Sydney accomplished a groundbreaking feat by demonstrating the capability to manipulate and identify small numbers of interacting packets of light energy or photons with high correlation for the first time.

The achievement, published in Nature Physics, marks a significant milestone in developing quantum technologies. The researchers observed it stimulated light emission, which Einstein predicted in 1916, in single photons for the first time.

Today, at the Moriond conference, the ATLAS and CMS collaborations have both presented the observation of a very rare process: the simultaneous production of four top quarks. They were observed using data from collisions during Run 2 of the Large Hadron Collider (LHC).

Both experiments’ results pass the required five-sigma to count as an observation—ATLAS’s observation with 6.1 sigma, higher than the expected significance of 4.3 sigma, and CMS’s observation with 5.5 sigma, higher than the expected 4.9 —making them the first observations of this process.

The top quark is the heaviest particle in the Standard Model, meaning it is the particle with the strongest ties to the Higgs boson. This makes top quarks ideal for looking for signs of physics beyond the Standard Model.

Hailey-Hailey disease is a rare, inherited condition characterized by patches of blisters appearing mainly in the skin folds of the arm pits, groin and under the breasts. It is caused by a mutation in the gene that codes for a specific protein involved in the transportation of calcium and manganese ions from the cell cytoplasm and into a sac-like organelle called the Golgi apparatus.

Scientists at Tohoku University, together with colleagues in Japan, have uncovered some aspects of this ’s structure that could help researchers understand how it works. The findings, published in the journal Science Advances, help build the foundations for research into finding treatments for Hailey-Hailey disease and other neurodegenerative conditions.

The protein the team studied is called secretory pathway Ca2+/Mn2+-ATPase, or SPCA for short. It is located in the Golgi apparatus, a cellular sac-like structure that plays a crucial role in protein quality control before they are released into cells. The Golgi apparatus also acts like a sort of calcium ion storage container. Calcium ions are vital for cell signaling processes and are important for proteins to function properly, so maintaining the right calcium ion balance inside cells is necessary for their day-to-day activities.

A team of chemists and computer scientists from the Swiss Federal Institute of Technology Lausanne, the University of California and Institut des Sciences et Ingenierie Chimiques, Ecole, have developed an ecosystem of tools to boost machine-learning-based design of metal-organic frameworks.

In their study, reported in the journal ACS Central Science, Kevin Maik Jablonka, Andrew Rosen, Aditi Krishnapriyan and Berend Smit coded tools to convert data into machine learning inputs to create a system to boost machine-learning frameworks.

Reticular chemistry is the science of designing and synthesizing porous crystalline materials with certain predefined structures and properties (building blocks). These materials, known as (MOFs) have applications in gas storage, separation, catalysis, sensing and drug delivery.

A team of Rutgers University scientists dedicated to pinpointing the primordial origins of metabolism – a set of core chemical reactions that first powered life on Earth – has identified part of a protein that could provide scientists clues to detecting planets on the verge of producing life.

The research, published on March 10 in the journal Science Advances.

<em>Science Advances</em> is a peer-reviewed, open-access scientific journal that is published by the American Association for the Advancement of Science (AAAS). It was launched in 2015 and covers a wide range of topics in the natural sciences, including biology, chemistry, earth and environmental sciences, materials science, and physics.