Toggle light / dark theme

From a handheld soldering gun to the ‘playbird mansion’ and, of course, the marvel of a smartphone microscope, there are some gadgets that we come across that we instantly want – and this wireless ultrasonic cutter is definitely another.

And much like the soldering gun, this little jigger has such a broad range of applications that, while it’s aimed at the do-it-yourself maker and crafter, its appeal is certainly not limited to this.

The Hanboost C1 wireless ultrasonic cutter can precisely slice through a vast array of materials – wood, plastics, leather, rubber, paper – silently, using 40,000 vibrations per second to make even the most fiddly jobs look easy. No tearing, no scratching or scoring, it just glides through calmly, slowly and with effortless precision.

Cold Spring Harbor Laboratory scientists developed an AI algorithm inspired by the genome’s efficiency, achieving remarkable data compression and task performance.

In a sense, each of us begins life ready for action. Many animals perform amazing feats soon after they’re born. Spiders spin webs. Whales swim. But where do these innate abilities come from? Obviously, the brain plays a key role as it contains the trillions of neural connections needed to control complex behaviors.

However, the genome has space for only a small fraction of that information. This paradox has stumped scientists for decades. Now, Cold Spring Harbor Laboratory (CSHL) Professors Anthony Zador and Alexei Koulakov have devised a potential solution using artificial intelligence.

Some researchers propose that advancing AI to the next level will require an internal architecture that more closely mirrors the human mind. Rufin VanRullen joins Brian Greene to discuss early results from one such approach, based on the Global Workspace Theory of consciousness.

This program is part of the Big Ideas series, supported by the John Templeton Foundation.

Participant: Rufin VanRullen.
Moderator: Brian Greene.

00:00 — Introduction.

A recent study from the Centre for Genomic Regulation (CRG) in Barcelona reveals that bacteria can adapt their ribosomes when exposed to widely used antibiotics, potentially playing a role in the development of antibiotic resistance. These small changes can modify the drug-binding sites on ribosomes, reducing the effectiveness of antibiotics.

The research focused on Escherichia coli (E. coli), a usually harmless bacterium that can lead to serious infections. The team exposed E. coli to two antibiotics, streptomycin and kasugamycin.

Read Full Story.

A new study by the University of Reading on human brain evolution has found that modern humans, Neanderthals, and other recent relatives evolved larger brains much more rapidly than earlier species. This challenges previous ideas, suggesting that brain size increased gradually within each ancient human species, rather than through sudden leaps between species.

Read Full Story.

A research team at the Institute of Materials Chemistry at TU Wien, led by Professor Dominik Eder, has developed a new synthetic approach to create durable, conductive and catalytically active hybrid framework materials for (photo)electrocatalytic water splitting. The study is published in Nature Communications.

The development of technologies for sustainable energy carriers, such as hydrogen, is essential. A promising way to produce hydrogen (H2) is from splitting water into H2 and oxygen (O2), either electrochemically or using light, or both—a path that the team follows. However, this process requires a catalyst that accelerates the reaction without being consumed. Key criteria for a catalyst include a large surface area for the adsorption and splitting of water molecules, and durability for .

Zeolitic imidazolate frameworks (ZIFs), a class of hybrid organic/inorganic materials with molecular interfaces and numerous pores, offer record surface areas and ample adsorption sites for water as catalysts. They consist of single metal ions, such as cobalt ions, which are connected by specific organic molecules, called ligands, through what is called coordination bonds. Conventional ZIFs only contain a single type of organic ligand.

Asteroids are remnants of the formation of our solar system, and while many can be found within the asteroid belt between the orbits of Mars and Jupiter, some cannot. One such object is asteroid (162173) Ryugu, a 1 km-wide near-Earth asteroid believed to have originated in the asteroid belt. However, it has since moved to cross Earth’s orbit, located 300 million km from our planet.

The asteroid is constantly bombarded by debris in space and new research, published in The Astrophysical Journal, has suggested that even can have damaging effects.

Japan’s Aerospace Exploration Agency (JAXA) launched the Hayabusa2 spacecraft to conduct and sample collection on the asteroid in 2018 and 2019. Laboratory work on these samples identified a distinct pattern of dehydration of phyllosilicates (sheet-like silicate minerals, such as magnesium-rich serpentine and saponite), whereby the bonds between the included oxygen and hydrogen atoms are broken.