Toggle light / dark theme

In a recent study published in the Journal of the Academy of Nutrition and Dietetics, researchers assessed the impact of consuming unprocessed, minimally processed (UMP), and ultra-processed foods (UPFs) on diet quality.

Study: Intakes of unprocessed and minimally processed and ultra-processed food are associated with diet-quality in female and male health professionals in the United States: a prospective analysis.Image Credit: Parilov/Shutterstock.com

A recent study published in the journal Algal Research summarized the existing knowledge on bioactive compounds in green seaweeds and Ulva spp., focusing on its application as a future superfood.

Seaweeds are macroalgae, colonizing brackish water bodies and seas, and are classified into brown, green, and red algae. Research suggests that seaweeds are enriched with bioactive compounds with therapeutic potential. Seaweeds are also good sources of nutrients, antioxidants, and dietary fiber and have a low caloric value.

Ulva lactuca, a green alga, is a source of carotenoids, ulvan (a polysaccharide), proteins, minerals, vitamin C, and dietary fibers. In the present study, the authors discussed the chemistry and applications of bioactive compounds of green seaweeds, mainly focusing on U. lactuca and emphasizing its application as a superfood.

The real move at play here, by so called AI Ethics clowns, is a complete shut down of Ai, and AI research. That IS their end goal — end game. See if can really turn it off 6 months. ha! Ok, how about 2 more years! etc… etc…

Ya publicly tipped your hand.


An open letter published today calls for “all AI labs to immediately pause for at least 6 months the training of AI systems more powerful than GPT-4.”

This 6-month moratorium would be better than no moratorium. I have respect for everyone who stepped up and signed it. It’s an improvement on the margin.

Huntington’s disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in the Huntingtin (HTT) gene. The resulting polyglutamine (polyQ) tract alters the function of the HTT protein. Although HTT is expressed in different tissues, the medium spiny projection neurons (MSNs) in the striatum are particularly vulnerable in HD. Thus, we sought to define the proteome of human HD patient–derived MSNs. We differentiated HD72 induced pluripotent stem cells and isogenic controls into MSNs and carried out quantitative proteomic analysis. Using data-dependent acquisitions with FAIMS for label-free quantification on the Orbitrap Lumos mass spectrometer, we identified 6,323 proteins with at least two unique peptides. Of these, 901 proteins were altered significantly more in the HD72-MSNs than in isogenic controls. Functional enrichment analysis of upregulated proteins demonstrated extracellular matrix and DNA signaling (DNA replication pathway, double-strand break repair, G1/S transition) with the highest significance. Conversely, processes associated with the downregulated proteins included neurogenesis-axogenesis, the brain-derived neurotrophic factor-signaling pathway, Ephrin-A: EphA pathway, regulation of synaptic plasticity, triglyceride homeostasis cholesterol, plasmid lipoprotein particle immune response, interferon-γ signaling, immune system major histocompatibility complex, lipid metabolism and cellular response to stimulus. Moreover, proteins involved in the formation and maintenance of axons, dendrites, and synapses (e.g., Septin protein members) were dysregulated in HD72-MSNs. Importantly, lipid metabolism pathways were altered, and using quantitative image, we found analysis that lipid droplets accumulated in the HD72-MSN, suggesting a deficit in the turnover of lipids possibly through lipophagy. Our proteomics analysis of HD72-MSNs identified relevant pathways that are altered in MSNs and confirm current and new therapeutic targets for HD.

Improving the seasonal influenza vaccine and public health specialists’ ability to predict pandemic potential in new flu strains may be possible, due to new findings from scientists at St. Jude Children’s Research Hospital. The key is the stability of a viral protein that gains entry into human cells. The findings were published today in Science Advances.

“We found that the protein flu viruses use to enter cells, hemagglutinin, needs to be relatively stable and resistant to acid in an effective H3N2 flu vaccine,” said senior and co-corresponding author Charles Russell, Ph.D., St. Jude Department of Infectious Diseases. “We found a mutation in hemagglutinin that makes the grow better in eggs also causes a mismatch in the vaccine. The mutation makes the virus unstable and makes it look less human-like.”

The H3N2 virus is a subtype of Influenza A and is one of the culprits behind the seasonal flu. Many flu vaccines are made by growing the virus in chicken eggs, but the virus can gain mutations during that process. Some of those changes, like the one uncovered by the St. Jude group, make the vaccine less effective in generating the ideal immune response. At the same time, other mutations have more beneficial impacts.

A large case-control study by international researchers at the RIKEN Center for Integrative Medical Sciences (IMS) in Japan has found that people who carry certain genetic risk factors for gastric (stomach) cancer have a much greater risk if they have also been infected by the bacterium Helicobacter pylori. The study, published in The New England Journal of Medicine, could contribute to the development of tailored genomic medicine for treating stomach cancer.

Stomach is the fourth leading cause of cancer death worldwide and has both environmental and . Environmentally, infection by H. pylori increases the risk of . Because the virulence of H. pylori in East Asia is high, the incidence of stomach cancer is higher in countries like Japan. Genetically, while hereditary gene variation is why we have different colored eyes and are unique as individuals, sometimes gene variants are associated with the risk of disease. For example, individuals who carry a certain hereditary pathogenic variant of the CDH1 gene have an increased risk of .

Testing for the presence of pathogenic variants is now one of several measures being taken for cancer prevention, surveillance, and treatment selection. However, because large-scale, case-control studies are lacking, and because those that exist have not assessed how the risk for stomach cancer changes when pathogenic variants interact with like H. pylori, it remains unclear what actual clinical measures can be taken. To address this issue, researchers therefore evaluated the risk of gastric cancer in a large case-control study of Japanese people, considering whether they were carriers of pathogenic variants and whether they had been infected by H. pylori.

Superconductors make highly efficient electronics, but the ultralow temperatures and ultrahigh pressures required to make them work are costly and difficult to implement. Room-temperature superconductors promise to change that.

The recent announcement by researchers at the University of Rochester of a new material that is a superconductor at room temperature, albeit at high pressure, is an exciting development – if proved. If the material or one like it works reliably and can be economically mass-produced, it could revolutionize electronics.

Room-temperature superconducting materials would lead to many new possibilities for practical applications, including ultraefficient electricity grids, ultrafast and energy-efficient computer chips, and ultrapowerful magnets that can be used to levitate trains and control fusion reactors.

Jennifer Garrison is an assistant professor at the Buck Institute for Research on Aging and also holds appointments in the Department of Cellular and Molecular Pharmacology at University of California, San Francisco (UCSF) and the Davis School of Gerontology at the University of Southern California.

Over 321 books from 170 plus interviews over 5 years.

Over 321 books from 170 interviews over 5 years for autodidacts

Jennifer Garrison Links.
https://www.buckinstitute.org/lab/garrison-lab/
https://www.linkedin.com/in/drjennifergarrison.
https://twitter.com/jenngarrison?lang=en.

PODCAST INFO: