Toggle light / dark theme

Researchers at Lawrence Livermore National Laboratory (LLNL) have developed a new approach that combines generative artificial intelligence (AI) and first-principles simulations to predict three-dimensional atomic structures of highly complex materials.

This research highlights LLNL’s efforts in advancing machine learning for materials science research and supporting the Lab’s mission to develop innovative technological solutions for energy and sustainability.

The study, recently published in Machine Learning: Science and Technology, represents a potential leap forward in the application of AI for materials characterization and inverse design.

The shift from an awake state to unconsciousness is a phenomenon that has long captured the interest of scientists and philosophers alike, but how it happens has remained a mystery—until now. Through studies on rats, a team of researchers at Penn State has pinpointed the exact moment of loss of consciousness due to anesthesia, mapping what happens in different brain regions during that moment.

The study has implications for humans as well as for other types of loss of , such as sleep, the researchers said. They published their results in Advanced Science.

“People in the neuroscience field generally understand what happens to a patient who is going under anesthesia at a ,” said corresponding author Nanyin Zhang, the Dorothy Foehr Huck and J. Lloyd Huck Chair in Brain Imaging and professor of biomedical engineering at Penn State.

Yongcui Mi has developed a new technology that enables real-time shaping and control of laser beams for laser welding and directed energy deposition using laser and wire. The innovation is based on the same mirror technology used in advanced telescopes for astronomy.

In a few years, this new technology could lead to more efficient and reliable ways of using lasers for welding and directed energy deposition with laser and wire. The manufacturing industry could benefit from new opportunities to build more robust processes that meet stringent quality standards.

“We are the first to use deformable technology for this application. The mirror optics can handle multi-kilowatt laser power, and with the help of computer vision and AI, the laser beam can be shaped in real time to adapt to variations in joint gaps,” explains Yongcui, a newly minted Ph.D. in Production technology from University West.

The search for quantum gravity has gone on for 100 years, but it is not the only unification challenge in physics. Many of us believe that one day there will be a unification theory—a theory that will reconcile many divergent physical theories.

Our new article published in Physica Scripta brings new hope that such a theory exists. It demonstrates that the use of a certain mathematical object called Alena Tensor reconciles various physical theories, including , electrodynamics, and continuum mechanics. Will this finally allow scientists to unify descriptions used in physics?

Researchers have developed XLuminA, an AI framework for the automated discovery of super-resolution microscopy techniques. With 10,000x faster optimization than traditional methods, it discovers unexplored designs breaking the diffraction limit.

Researchers have developed a tiny, room-temperature device that creates a special type of structured light called radially polarized photons, which are highly useful for secure communication, advanced imaging, and precision optical tools.

By carefully designing and positioning a quantum dot within a nanoantenna, they achieved high-quality light with more than 93% purity. This breakthrough helps improve the efficiency and practicality of devices that use structured light, paving the way for advancements in and optical technology.

A team led by Prof. Ronen Rapaport from the Racah School of Physics at The Hebrew University of Jerusalem has developed the new device that produces radially polarized photons at room temperature. This advancement offers new possibilities for both classical and quantum communication technologies.

New analysis supports Einstein’s relativity and narrows neutrino mass ranges, hinting at evolving dark energy.

Gravity, the fundamental force sculpting the universe, has shaped tiny variations in matter from the early cosmos into the vast networks of galaxies we see today. Using data from the Dark Energy Spectroscopic Instrument (DESI), scientists have traced the evolution of these cosmic structures over the past 11 billion years. This research represents the most precise large-scale test of gravity ever conducted, offering unprecedented insights into the universe’s formation and behavior.

Introduction to DESI and its global impact.