There have been 4 research papers and technological advancements over the last 4 weeks that in combination drastically changed my outlook on the AGI timeline.
GPT-4 can teach itself to become better through self reflection, learn tools with minimal demonstrations, it can act as a central brain and outsource tasks to other models (HuggingGPT) and it can behave as an autonomous agent that can pursue a multi-step goal without human intervention (Auto-GPT). It is not an overstatement that there are already Sparks of AGI.
In this weeks episode of Minutes With we sat down with Mustafa Al-Bassam, a former member of Anonymous and one of the founders of LulzSec.
Mustafa tells us how he got in to hacking and how he ended up getting involved in attacks on The Sun, The Westboro Baptist Church and even the US Government.
U.S. DARPA’s Robotic Autonomy in Complex Environments with Resiliency (RACER) program recently conducted its third experiment to assess the performance of off-road unmanned vehicles. These test runs, conducted March 12–27, included the first with completely uninhabited RACER Fleet Vehicles (RFVs), with a safety operator overseeing in a supporting chase vehicle. The goal of the RACER program is to demonstrate autonomous movement of combat-scale vehicles in complex, mission-relevant off-road environments that are significantly more unpredictable than on-road conditions. The multiple courses were in the challenging and unforgiving terrain of the Mojave Desert at the U.S. Army’s National Training Center (NTC) in Ft. Irwin, California. As at the previous events, teams from Carnegie Mellon University, NASA’s Jet Propulsion Laboratory, and the University of Washington participated. This completed the project’s first phase.
“We provided the performers RACER fleet vehicles with common performance, sensing, and compute. This enables us to evaluate the performance of the performer team autonomy software in similar environments and compare it to human performance,” said Young. “During this latest experiment, we continued to push vehicle limits in perceiving the environments to greater distances, enabling further increase in speeds and better adaptation to newly encountered environmental conditions that will continue into RACER’s next phase.”
“At Experiment Three, we successfully demonstrated significant improvements in our off-road speeds while simultaneously reducing any interaction with the vehicle during test runs. We were also honored to have representatives from the Army and Marine Corps at the experiment to facilitate transition of technologies developed in RACER to future service unmanned initiatives and concepts,” said Stuart Young, RACER program manager in DARPA’s Tactical Technology Office.
Vrgineers and Advanced Realtime Tracking demonstrate the combination of XTAL 3 headset and SMARTTRACK3/M in a mixed reality pilot trainer. The partnership between these two technological companies started in 2018. At IT2EC 2023 in Rotterdam, the integrated SMARTTRACK3/M into an F-35-like Classroom Trainer manufactured and delivered to USAF and RAF will be for display. This unique combination of the latest ART infrared all-in-one hardware and Vrgineers algorithms for cockpit motion compensation creates an unseen immersion for every mixed reality training. One of the challenges in next-generation pilot training using virtual technology and motion platforms is the alignment of the pilot’s position in the cockpit. By overcoming this issue, the simulator industry is moving forward to eliminate the disadvantages of simulated training.
“We are continuously working on removing the technological challenges of modern simulators, one of which is caused by front-facing camera position distance from users’ eyes. We are developing advanced algorithms for motion compensation to minimize the shift between virtual and physical scene, making experience realistic. The durability and compact size of SMARTTRACK3/M, which was optimized for using in cockpits, allows us as training device integrator to make it a comprehensive part of a simulation,” says Marek Polcak, CEO of Vrgineers.
“This is the application SMARTTRACK3/M was designed for., We have taken the proven hardware from the SMARTTRACK3 and adapted it to the limited space available. As a result, we have the precision and the reliability of a seasoned system in a form factor fitting to simulator cockpits” says Andreas Werner, business development manager for simulations at ART.
Despite the availability of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Deep Visual Proteomics (DVP), a recently introduced method, combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context.
(PhysOrg.com) — Scientists have literally taken a leap into a new era of computing power by making the world’s smallest precision-built transistor — a “quantum dot” of just seven atoms in a single silicon crystal. Despite its incredibly tiny size — a mere four billionths of a metre long — the quantum dot is a functioning electronic device, the world’s first created deliberately by placing individual atoms.
It can be used to regulate and control electrical current flow like a commercial transistor but it represents a key step into a new age of atomic-scale miniaturisation and super-fast, super-powerful computers.
The discovery is reported today in the journal Nature Nanotechnology by a team from the UNSW Centre for Quantum Computer Technology (CQCT) and the University of Wisconsin-Madison.
A team of scientists at the U.S. Department of Energy’s Argonne National Laboratory, have achieved efficient quantum coupling between two distant magnetic devices, which can host a certain type of magnetic excitations called magnons. These excitations happen when an electric current generates a magnetic field. Coupling allows magnons to exchange energy and information. This kind of coupling may be useful for creating new quantum information technology devices.
This instant communication does not require sending a message between magnons limited by the speed of light. It is analogous to what physicists call quantum entanglement. Following on from a 2019 study, the researchers sought to create a system that would allow magnetic excitations to talk to one another at a distance in a superconducting circuit. This would allow the magnons to potentially form the basis of a type of quantum computer. For the basic underpinnings of a viable quantum computer, researchers need the particles to be coupled and stay coupled for a long time.
Researchers have recently made a groundbreaking discovery in the field of kidney disease. They have found a new pathway that could potentially prevent kidney failure in thousands of people. Dr. Carl May and his team at Bristol Medical School, with funding from Kidney Research UK, have discovered a new treatment pathway for non-genetic nephrotic syndrome.
This targets the unknown factor that leads to kidney failure. Nephrotic syndrome is a rare kidney condition that causes protein to leak into the urine, affecting around 10,000 people annually in the UK. The discovery offers hope for patients, especially children, who may develop kidney failure.
Researchers from Bristol Renal have identified a receptor called PAR-1 that works in conjunction with an unknown factor to cause kidney failure in patients with idiopathic nephrotic syndrome (INS). They found that anti-PAR-1 treatments could block the effect of the factor and prevent kidneys from failing, potentially making transplantation a more viable option for more patients.