Toggle light / dark theme

A new Tesla Megapack project has broken ground in Arizona, and when it comes online in 2024, it will be the state’s largest energy storage system.

For utilities, battery energy storage is one of the most helpful new technologies they can employ to reduce fossil fuel dependence and increase the reliability of their associated grid. By holding onto excess power generated during lulls in demand, power companies can more easily address peak demand and, importantly, reduce costs. Now, a new Tesla Megapack energy storage system is set to do just that in Arizona.

The Sierra Estrella energy storage facility, constructed by utility company Salt River Project (SRP) and energy system constructor Plus Power LLC, will be the largest of its kind in Arizona. The massive network of Tesla Megapacks will have a capacity of 1,000MWh, enough energy to power 56,000 homes for four hours. According to previous information released by SRP, the project was set to cost $400 million, but this does not account for the recent Tesla Megapack price cut.

Researchers in the United States have developed a new ultrasonic acoustic attack that can covertly give hackers remote access to many smart devices by turning the device’s microphone and voice assistant against them.

The attack works by using ultrasonic acoustic signals that are inaudible to humans but can be picked up by voice assistants on smart devices, a type of cyberattack commonly referred to as a “SurfingAttack” or “ DolphinAttack.”

With a SurfingAttack, a hacker can modulate voice commands into silent, near-ultrasonic signals, allowing them to issue commands to a smart device, all while a user is blissfully unaware their device has been hijacked.

Texas A&M University scientists have discovered a 1,000% difference in the storage capacity of metal-free, water-based battery electrodes.

The metal-free water-based batteries are unique from those that utilize cobalt in their lithium-ion form. The research group’s focus on this type of battery stems from a desire for greater control over the domestic supply chain as cobalt and lithium are commonly sourced from outside the country. Additionally, the batteries’ safer chemistry could prevent fires.

Chemical engineering professor Dr. Jodie Lutkenhaus and chemistry assistant professor Dr. Daniel Tabor has published their findings about lithium-free batteries in Nature Materials.

Senescent cells are those that have stopped dividing but haven’t read the “time to die” memo. Instead, they hang around, accumulating in the body and fueling chronic inflammation – sometimes called inflammaging – which in turn, contributes to conditions such cardiovascular diseases, chronic kidney disease, type 2 diabetes, cancer, sarcopenia and degenerative disorders.

Longevity. Technology: In mice, eliminating senescent cells from aging tissues can restore tissue balance and lead to an increased healthy lifespan. Now a team led by investigators at Massachusetts General Hospital (MGH), a founding member of Mass General Brigham (MGB), has found that the immune response to a virus that is ubiquitously present in human tissues can detect and eliminate senescent cells in the skin [1].

For the study, which is published in Cell, the scientists analyzed young and old human skin samples to learn more about the clearance of senescent cells in human tissue.

A lightning bolt that struck a tree on Florida’s west coast has produced a fascinating type of phosphorus material we haven’t seen on Earth before: one that could represent a whole new mineral group, bridging the gap between space minerals and minerals found on Earth.

The material, which is a close match for calcium phosphite (CaHPO3), was found trapped inside a fulgurite – a “metal glob” formed by the reaction of the ultra-hot lightning bolt with the sand around the roots of its target.

These ‘fossilized lightning’ fulgurites often occur when lightning strikes certain types of sand, silica, and rock. What’s much less common is to find something so unique hidden inside one of these structures.

Neuroscientists at MIT have discovered a way to potentially reverse neurodegeneration and other issues related to Alzheimer’s disease, according to a news release from the school.

Researchers, experimenting on mice, found that interfering with an enzyme that is typically overactive in the brains of people with Alzheimer’s can reverse the degeneration in the brain.