Toggle light / dark theme

Working with week-old zebrafish larva, researchers at Weill Cornell Medicine and colleagues decoded how the connections formed by a network of neurons in the brainstem guide the fishes’ gaze.

The study, published Nov. 22 in Nature Neuroscience, found that a simplified artificial circuit, based on the architecture of this neuronal system, can predict activity in the network. In addition to shedding light on how the brain handles short-term memory, the findings could lead to novel approaches for treating eye movement disorders.

Organisms are constantly taking in an array of sensory information about the environment that is changing from one moment to the next. To accurately assess a situation, the brain must retain these informational nuggets long enough to use them to form a complete picture—for instance, linking together the words in a sentence or allowing an animal to keep its eyes directed to an area of interest.

Researchers have managed to coax a quantum computer to pulse with a rhythm unlike any before—a rhythm that defies conventional physics. For the first time, scientists have transformed a quantum processor into a robust time crystal, a bizarre state of matter that ticks endlessly without external energy.

This achievement, the work of physicists from China and the United States, could mark a turning point for quantum computing. By stabilizing the delicate systems that underpin this cutting-edge technology, the experiment hints at a path toward practical quantum computers capable of solving problems far beyond the reach of traditional machines.

Unlike conventional phases, such as solids or liquids, time crystals exist in a state of perpetual motion. Let me explain.

Memorial Sloan Kettering Cancer Center-led researchers have identified a small molecule called gliocidin that kills glioblastoma cells without damaging healthy cells, potentially offering a new therapeutic avenue for this aggressive brain tumor.

Glioblastoma remains one of the most lethal primary brain tumors, with current therapies failing to significantly improve patient survival rates. Glioblastoma is difficult to treat for several reasons. The tumor consists of many different types of cells, making it difficult for treatments to target them all effectively.

There are few genetic changes in the cancer for drugs to target, and the tumor creates an environment that weakens the body’s immune response against it. Even getting medications near targets in the brain is challenging because the protective blocks entry for most potential drug treatments.

Check out courses in science, computer science, or mathematics on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Ten years ago, physicists discovered an anomaly that was dubbed the “ATOMKI anomaly”. The decays of certain atomic nuclei disagreed with our current understanding of physics. Particle physicists assigned the anomaly to a new particle, X17, often described as a fifth force. The anomaly was now tested by a follow-up experiment, but this is only the latest twist in a rather confusing story.

Paper: https://journals.aps.org/prl/abstract

🤓 Check out my new quiz app ➜ http://quizwithit.com/

Researchers at University of California San Diego analyzed the genomes of hundreds of malaria parasites to determine which genetic variants are most likely to confer drug resistance.

The findings, published in Science, could help scientists use machine learning to predict antimalarial and more effectively prioritize the most promising experimental treatments for further development. The approach could also help predict treatment resistance in other , and even cancer.

“A lot of drug resistance research can only look at one chemical agent at a time, but what we’ve been able to do here is create a roadmap for understanding antimalaria drug resistance across more than a hundred different compounds,” said Elizabeth Winzeler, Ph.D., a professor at UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and the Department of Pediatrics at UC San Diego School of Medicine.

Quantum mechanics, a realm of the incredibly small, is often characterized by its paradoxical nature. One such paradox is the concept of superposition, where a quantum particle can exist in multiple states simultaneously. These delicate states, however, are notoriously fragile, often collapsing into a single, definite state within mere fractions of a second. Yet, a recent breakthrough has pushed the boundaries of quantum stability, achieving a record-breaking 23-minute lifespan for a specific type of superposition known as a cat state.

The term “cat state” is a whimsical reference to Schrödinger’s famous thought experiment, where a cat is placed in a box with a device that could randomly kill it. Until the box is opened, the cat is both alive and dead, a superposition of two states. In quantum mechanics, cat states manifest when a quantum object, such as an atom or a photon, exists in multiple states simultaneously, defying classical intuition.

While researchers have previously created cat states in laboratories, these states have been fleeting, quickly succumbing to the disruptive influence of their environment. However, a team led by Zheng-Tian Lu at the University of Science and Technology of China has managed to extend the lifespan of a cat state dramatically. They achieved this feat by manipulating a cloud of 10,000 ytterbium atoms, cooled to near absolute zero and trapped by laser light. By carefully controlling the atoms’ quantum states, the researchers were able to induce a superposition where each atom existed in two distinct spin states simultaneously.