Toggle light / dark theme

Physicists have performed a groundbreaking simulation they say sheds new light on an elusive phenomenon that could determine the ultimate fate of the Universe.

Pioneering research in quantum field theory around 50 years ago proposed that the universe may be trapped in a false vacuum – meaning it appears stable but in fact could be on the verge of transitioning to an even more stable, true vacuum state. While this process could trigger a catastrophic change in the Universe’s structure, experts agree that predicting the timeline is challenging, but it is likely to occur over an astronomically long period, potentially spanning millions of years.

In an international collaboration between three research institutions, the team report gaining valuable insights into false vacuum decay – a process linked to the origins of the cosmos and the behaviour of particles at the smallest scales. The collaboration was led by Professor Zlatko Papic, from the University of Leeds, and Dr Jaka Vodeb, from the Jülich Supercomputing Centre (JSC) at Forschungszentrum Jülich, Germany.

The odds of a ‘city-destroying’ asteroid hitting Earth in less than 10 years have risen.

Asteroid 2024 YR4 was found by NASA’s Asteroid Terrestrial-impact Last Alert System and it’s now at the top of NASA’s Sentry Risk Table and European Space Agency’s NEO (near Earth objects) impact Risk List.

For a full breakdown of the implications of the asteroid, head here.

Artificial Intelligence (AI) is revolutionizing industries globally, and medical education is no exception. For a nation like India, where the healthcare system faces immense pressure, AI integration in medical learning is more than a convenience, it’s a necessity. AI-powered tools offer medical students transformative benefits: personalized learning pathways that adapt to individual knowledge gaps, advanced clinical simulation platforms for risk-free practice, intelligent tutoring systems that provide immediate feedback, and sophisticated diagnostic training algorithms that enhance clinical reasoning skills. From offering personalized guidance to transforming clinical training, chatbots and digital assistants are redefining how future healthcare professionals prepare for their complex and demanding roles, enabling more efficient, interactive, and comprehensive medical education.

Personalized learning One of AI’s greatest contributions to medical education is its ability to create and extend personalized learning experiences. Conventional methods, on the other hand, often utilize a one-size-fits-all approach, leaving students to fend for themselves when they struggle. AI has the power to change this by analyzing a student’s performance and crafting study plans tailored to their strengths and weaknesses. This means students can focus on areas where they need the most help, saving time and effort.

Humanity will eventually need somewhere to live on the Moon. While aesthetics might not be the primary consideration when deciding what kind of habitat to build, it sure doesn’t hurt. The more pleasing the look of the habitat, the better, but ultimately, the functionality will determine whether or not it will be built. Dr. Martin Bermudez thinks he found a sweet synergy that was both functional and aesthetically pleasing with his design for a spherical lunar habitat made out of blown glass. NASA apparently agrees there’s potential there, as he recently received a NASA Institute for Advanced Concepts (NIAC) Phase I grant to flesh out the concept further.

Bermudez’s vision’s artistic design looks like something out of an Arthur C. Clarke novel: a glass sphere rising off the lunar surface that could potentially contain living and work areas for dozens of people. His firm, Skyeports, is founded on creating these blown glass structures in space.

The design has some challenges, as Dr. Bermudez discusses in an interview with Fraser. First is how to build this thing. It’s far too large to ship in any conventional lunar lander. However, there’s also no air on the Moon to use as the blown gas to create the spherical shape. Dr. Bermudez plans to utilize argon, which would initially be shipped up from Earth to fill the sphere. Argon has several advantages in that it’s a noble gas and not very reactive, so it’s unlikely to explode in the furnace while the glass is blown.

The process of separating useful molecules from mixtures of other substances accounts for 15% of the nation’s energy, emits 100 million tons of carbon dioxide and costs $4 billion annually.

Commercial manufacturers produce columns of porous materials to separate potential new drugs developed by the pharmaceutical industry, for example, and also for energy and chemical production, environmental science and making foods and beverages.

But in a new study, researchers at Case Western Reserve University have found these manufactured separation materials don’t function as intended because the pores are so packed with polymer they become blocked. That means the separations are inefficient and unnecessarily expensive.

Neuronal dendrites must relay synaptic inputs over long distances, but the mechanisms by which activity-evoked intracellular signals propagate over macroscopic distances remain unclear. Here, we discovered a system of periodically arranged endoplasmic reticulum-plasma membrane (ER-PM) junctions tiling the plasma membrane of dendrites at ∼1 μm intervals, interlinked by a meshwork of ER tubules patterned in a ladder-like array. Populated with Junctophilin-linked plasma membrane voltage-gated Ca2+ channels and ER Ca2+-release channels (ryanodine receptors), ER-PM junctions are hubs for ER-PM crosstalk, fine-tuning of Ca2+ homeostasis, and local activation of the Ca2+/calmodulin-dependent protein kinase II.

A new report from TechInsights breaks things down, suggesting we could be in for a closely matched competition.

When it comes to transistor density, TSMC’s N2 appears to take the lead. The publication’s data estimates N2’s high-density standard cell transistor density at an impressive 313 million transistors per square millimeter, outpacing Intel’s 18A at 238 million and Samsung’s SF3 at 231 million. Of course, density isn’t everything; chip designers use a mix of high-, standard-, and low-power cells. However, TSMC’s advantage in density could provide an edge for certain workloads.

The comparison becomes less clear when it comes to performance projections. Intel’s 18A may have an advantage over TSMC’s N2 and Samsung’s SF3, but these are still just estimates based on extrapolating from previous node improvements.

In a paper published earlier this month in Physical Review Letters, a team of physicists led by Jonathan Richardson of the University of California, Riverside, showcases how new optical technology can extend the detection range of gravitational-wave observatories such as the Laser Interferometer Gravitational-Wave Observatory, or LIGO, and pave the way for future observatories.

Since 2015, observatories like LIGO have opened a new window on the universe. Plans for future upgrades to the 4-kilometer LIGO detectors and the construction of a next-generation 40-kilometer observatory, Cosmic Explorer, aim to push the gravitational-wave detection horizon to the earliest times in the history of the universe, before the first stars formed. However, realizing these plans hinges on achieving laser power levels exceeding 1 megawatt, far beyond LIGO’s capabilities today.

The research paper reports a breakthrough that will enable gravitational-wave detectors to reach extreme laser powers. It presents a new low-noise, high-resolution approach that can correct the limiting distortions of LIGO’s main 40-kilogram mirrors which arise with increasing laser power due to heating.