The discovery of a new type of stem cell in deer antlers could lead to breakthroughs in human regeneration.
Since the system is designed to help those who are losing their voices due to motor or cognitive impairment, the training is also flexible. If you can’t do a 15-minute training session, you can stop and start until you’ve made it through all the sentences. In addition, the training system is self-guided, so there’s no screen-tapping necessary.
While the system is not designed as a voice-over system, you can use Personal Vocie to save often-used phrases like “How are you?” “Thank you,” and “Where is the bathroom?”
Personal Voice will live under Settings/Accessibility on the iPhone, iPad, and Mac, and works with any of these devices running Apple silicon. For now, it only supports English.
NewLimit, a company working towards the radical extension of human healthspan using epigenetic reprogramming has announced it has secured $40 million in Series A funding from prominent investors including Dimension, Founders Fund, and Kleiner Perkins.
This investment further bolsters the company’s belief that therapies to delay, halt or even reverse aging can be found through the exploration of epigenetic reprogramming. With a strong belief that their innovative approach can also address various age-related diseases, NewLimit aims to revolutionize the field of aging biology and pave the way for transformative advancements in healthcare.
Longevity. Technology: Epigenetic reprogramming is an emerging but exciting field of geroscience. It involves the identification of specific sets of transcription factors that can induce changes in gene expression and cellular behavior, effectively reversing or modifying the epigenetic markers associated with aging. This approach offers a unique opportunity to rejuvenate cells and tissues, potentially slowing down or even reversing the effects of aging and its related diseases. NewLimit says that while its products are designed to treat aging itself, the company also believes “these products could treat or prevent many diseases associated with aging, including fibrosis, infectious disease, and neurodegenerative disease.”
The 1980s: An Era of Computerphobia
Posted in futurism
When the machine became ubiquitous in homes across America, a new kind of anxiety captivated consumers.
A transistor made from wood
Posted in computing
Researchers in Sweden have built a transistor out of a plank of wood by incorporating electrically c.
A new publication in the May issue of Nature Aging by researchers from Integrated Biosciences, a biotechnology company combining synthetic biology and machine learning to target aging, demonstrates the power of artificial intelligence (AI) to discover novel senolytic compounds, a class of small molecules under intense study for their ability to suppress age-related processes such as fibrosis, inflammation and cancer.
The paper, “Discovering small-molecule senolytics with deep neural networks,” authored in collaboration with researchers from the Massachusetts Institute of Technology (MIT) and the Broad Institute of MIT and Harvard, describes the AI-guided screening of more than 800,000 compounds to reveal three drug candidates with comparable efficacy and superior medicinal chemistry properties than those of senolytics currently under investigation.
“This research result is a significant milestone for both longevity research and the application of artificial intelligence to drug discovery,” said Felix Wong, Ph.D., co-founder of Integrated Biosciences and first author of the publication. “These data demonstrate that we can explore chemical space in silico and emerge with multiple candidate anti-aging compounds that are more likely to succeed in the clinic, compared to even the most promising examples of their kind being studied today.”
Dr. Steven Gazal, an assistant professor of population and public health sciences at the Keck School of Medicine of USC, is on a mission to answer a perplexing question: Why, despite millions of years of evolution, do humans still suffer from diseases?
As part of an international research team, Gazal has made a groundbreaking discovery. They’ve become the first to accurately pinpoint specific base pairs in the human genome that have remained unaltered throughout millions of years of mammalian evolution. These base pairs play a significant role in human disease. Their findings were published in a special Zoonomia edition of the journal Science.
Gazal and his team analyzed the genomes of 240 mammals, including humans, zooming in with unprecedented resolution to compare DNA.
Out of all common refrains in the world of computing, the phrase “if only software would catch up with hardware” would probably rank pretty high. And yet, software does sometimes catch up with hardware. In fact, it seems that this time, software can go as far as unlocking quantum computations for classical computers. That’s according to researchers with the RIKEN Center for Quantum Computing, Japan, who have published work on an algorithm that significantly accelerates a specific quantum computing workload. More significantly, the workload itself — called time evolution operators — has applications in condensed matter physics and quantum chemistry, two fields that can unlock new worlds within our own.
Normally, an improved algorithm wouldn’t be completely out of the ordinary; updates are everywhere, after all. Every app update, software update, or firmware upgrade is essentially bringing revised code that either solves problems or improves performance (hopefully). And improved algorithms are nice, as anyone with a graphics card from either AMD or NVIDIA can attest. But let’s face it: We’re used to being disappointed with performance updates.
Scientists have reconstructed the oral microbiomes from dozens of ancient humans, revealing previously undiscovered genes.
Scientists reconstructed the oral microbiomes from dozens of ancient humans, revealing extinct genes.
One fish, swimming alone, encountering a robotic fish impersonator will be wary and tend to avoid the robot, but a group of real fish are more likely to accept the robot as one of their own, and sometimes even abandon other real fish to follow the robot.
Those are the findings of engineers from Peking University and China Agricultural University who created a realistic koi fish robot, and placed one or two in a tank with real fish to see how they would respond.