Menu

Blog

Page 3500

Aug 2, 2022

Distinct toll‐like receptor signaling in the salamander response to tissue damage

Posted by in category: biological

Circa 2021 This article states that humans have possibly an untapped regeneration ability and they may have found it in mice.


Using new phospho-flow cytometry techniques to measure signaling in individual cell subsets we compared mouse to salamander inflammation. These studies demonstrated evolutionarily conserved responses to PAMP ligands through toll-like receptors (TLRs) but identified key differences in response to DAMP ligands. Co-exposure of macrophages to DAMPs/PAMPs suppressed MAPK signaling in mammals, but not salamanders, which activate sustained MAPK stimulation in the presence of endogenous DAMPS.

Aug 2, 2022

Bone growth as the main determinant of mouse digit tip regeneration after amputation

Posted by in category: biotech/medical

The main structure shaping the mouse digit tip in size and form is the terminal phalangeal bone (Fig. Supl. 1). As all long bones, the terminal phalanx is formed during embryonic development through endochondral ossification, resulting in longitudinal growth, and through the process of appositional ossification, resulting in peripheral growth13. Differently from all long bones, the length of the distal phalanx is further increased by an additional ossification center located at the distal tip of the bone, through intramembranous ossification13,14. Estimations point that 55% of the postnatal elongation of the distal phalanx of mice is a consequence of this distal process13. One study showed that although distal amputation eliminates part of the terminal phalanx formed by endochondral ossification, bone regrowth after amputation is exclusively due to distal intramembranous ossification13. Similar to bone formation by intramembranous ossification during development or after injury16, bone regrowth after distal amputation of the mouse digit tip depends on Wnt signaling17.

Re-establishment of homeostasis and nail and bone regrowth are expected to occur naturally after digit tip lesions. However, the formation of a blastema, which is a hallmark of epimorphic regeneration in salamanders, has been largely discussed in mammals7,9,18,19,20,21,22. The search for a mammalian blastema is sustained by the idea that, as in salamanders, tissue-specific cells, or stem/progenitor cells, would respond to the distal amputation lesion, migrating to a central distal-most region of the digit, creating the multi-tissue structure comprising the regenerating digit. A study in mice17 shows that as in salamanders, each tissue comprising the regenerated digit is formed by tissue-specific stem cells residing in the tissues preserved after amputation, suggesting that trans-differentiation does not occur in amputated mouse digit tip. However, it is not known whether these stem cells are integrating a regenerative blastema induced by the distal amputation or simply generating more tissue through endogenous tissue repair responses.

In this study, we compared digit regenerative capacity after distal and proximal amputation and propose a hypothetical mechanism by which digits are able to regain a morphology that is close to normal after distal amputations but fails when amputations are performed proximally. While most tissues re-establish homeostasis in very similar ways in distal and proximal amputated digits, bone growth is only observed after distal amputations. Observing the regions affected by each amputation plan, we propose that the main difference between these two amputation plans is the elimination of osteogenic signals and precursor cells in proximally amputated digits. In distally amputated digits, the source of osteogenic signal emanating from the nail17 and the presence of osteoprogenitor cells in the periosteum23 could be sufficient to promote bone growth and give the digit a new tip.

Aug 2, 2022

Dark Matter Mapped Around Distant Galaxies

Posted by in categories: cosmology, evolution

Gravitational lensing of the cosmic microwave background has been used to probe the distribution of dark matter around some of the earliest galaxies in the Universe.

Investigating the properties of galaxies is fundamental to uncovering the still-unknown nature of the dominant forms of mass and energy in the Universe: dark matter and dark energy. Dark matter resides in “halos” surrounding galaxies, and information on the evolution of this invisible substance can be obtained by examining galaxies over a wide range of cosmic time. But observing distant galaxies—those at high redshifts—poses a challenge for astronomers because these objects look very dim. Fortunately, there is another way to probe the dark matter around such galaxies: via the imprint it leaves on the pattern of cosmic microwave background (CMB) temperature fluctuations through gravitational lensing (Fig. 1).

Aug 2, 2022

Bending under Big G

Posted by in categories: biotech/medical, wearables

Most measurements of Newton’s gravity constant use stationary masses, but a new experiment measures the constant with wiggling metal beams.


Researchers at the University of Massachusetts Amherst recently announced that they have figured out how to engineer a biofilm that harvests the energy in evaporation and converts it to electricity. This biofilm, which was announced in Nature Communications, has the potential to revolutionize the world of wearable electronics, powering everything from personal medical sensors to personal electronics.

Aug 2, 2022

Researchers engineer biofilm capable of producing long-term, continuous electricity from your sweat

Posted by in categories: biotech/medical, computing, engineering, wearables

Researchers have reported the discovery of an exoplanet orbiting Ross 508 near the inner edge of its habitable zone.


Researchers at the University of Massachusetts Amherst recently announced that they have figured out how to engineer a biofilm that harvests the energy in evaporation and converts it to electricity. This biofilm, which was announced in Nature Communications, has the potential to revolutionize the world of wearable electronics, powering everything from personal medical sensors to personal electronics.

“This is a very exciting technology,” says Xiaomeng Liu, graduate student in electrical and computer engineering in UMass Amherst’s College of Engineering and the paper’s lead author. “It is real green energy, and unlike other so-called ‘green-energy’ sources, its production is totally green.”

Continue reading “Researchers engineer biofilm capable of producing long-term, continuous electricity from your sweat” »

Aug 2, 2022

Researchers Discover Nearly 3,200 Mobile Apps Leaking Twitter API Keys

Posted by in categories: cybercrime/malcode, space

Researchers have reported the discovery of an exoplanet orbiting Ross 508 near the inner edge of its habitable zone.


Researchers have uncovered a list of 3,207 mobile apps that are exposing Twitter API keys in the clear, some of which can be utilized to gain unauthorized access to Twitter accounts associated with them.

The takeover is made possible, thanks to a leak of legitimate Consumer Key and Consumer Secret information, respectively, Singapore-based cybersecurity firm CloudSEK said in a report exclusively shared with The Hacker News.

Continue reading “Researchers Discover Nearly 3,200 Mobile Apps Leaking Twitter API Keys” »

Aug 2, 2022

Australian Hacker Charged with Creating, Selling Spyware to Cyber Criminals

Posted by in categories: business, cybercrime/malcode

A 24-year-old Australian hacker has been charged with developing and selling the “Imminent Monitor” spy software to more than 14,500 people.


Critical Security Vulnerabilities In Netgear Business Routers Which The Netgear Team Can’t Fix. Stop Using These Routers As Soon As Possible — Vulnerabilities — Information Security Newspaper | Hacking News.

Aug 2, 2022

Critical Security Vulnerabilities In Netgear Business Routers Which The Netgear Team Can’t Fix. Stop Using These Routers As Soon As Possible

Posted by in categories: business, cybercrime/malcode

Vulnerabilities — information security newspaper | hacking news.

Aug 2, 2022

LockBit Ransomware Exploits Windows Defender to Sideload Cobalt Strike Payload

Posted by in category: cybercrime/malcode

A Sentinel One investigation revealed threat actors (TA) have been abusing the Windows Defender command line tool to decrypt and load Cobalt Strike payloads.

The cybersecurity experts detailed their findings in an advisory last week, in which they said the TA managed to carry out the attacks after obtaining initial access via the Log4Shell vulnerability against an unpatched VMware Horizon Server.

The attackers reportedly modified the Blast Secure Gateway component of the application by installing a web shell using PowerShell code.

Aug 2, 2022

Dark Web Research Suggests 87% of Ransomware brands Exploit Malicious Macros

Posted by in category: cybercrime/malcode

The findings reportedly uncovered 475 web pages of elaborate ransomware products and services, alongside many high-profile groups aggressively marketing ransomware-as-a-service (RAAS).

Forensic Pathways also identified 30 different “brands” of ransomware, with some known names such as BlackCat, Egregor, Hidden Tear and WannaCry having been successfully used in high-profile attacks.

The research also suggested Ransomware strains used in high-profile attacks command a higher price for associated services.