Toggle light / dark theme

The find intrigued scientists, including my colleagues and I. Upon closer investigation, we realised the scar was created by a ferocious tornado that no-one knew had occurred. We outline the findings in new research published today.

Tornadoes are a known threat in the United States and elsewhere. But they also happen in Australia.

Without the power of technology, this remarkable example of nature’s ferocity would have gone unnoticed. It’s important to study the tornado’s aftermath to help us predict and prepare for the next big twister.

Year 2006 face_with_colon_three


One of the good things about being God is that there’s not much competition. From time immemorial, no one else has boasted the skills necessary to create a universe. Now that’s about to change. “People are becoming more powerful,” says Andrei Linde, a cosmologist based at Stanford University in California. “Maybe it’s time we redefine God as something more sophisticated than just the creator of the universe.”

Linde was prompted to make this wry observation by the news that a glittering prize is within physicists’ reach. For decades, particle accelerators have been racking up an impressive list of achievements, including creating antimatter and exotic particles never seen in nature. The next generation of these giant colliders will provide the hunting ground for the elusive Higgs boson, thought to be the source of all mass. These machines might even create mini black holes. Mighty as those discoveries and creations are, however, they pale into insignificance beside what Nobuyuki Sakai and his colleagues at Yamagata University in Japan have now put on the table. They have discovered how to use a particle accelerator to create a whole new universe.

A recent study by the Baycrest Centre for Geriatric Care reveals that an area of the brain distinct from the stroke lesion may play a significant role in causing the life-altering symptoms with which survivors are often left, which can include severe challenges with speech, mobility and cognition. These results provide hope that innovative, non-invasive treatments could help improve or even fully reverse post-stroke symptoms.

Strokes (which more than 100,000 Canadians suffer every year) leave behind an area where brain cells have died, called a lesion. However, this cannot explain the widespread consequences of , limiting scientists’ and clinicians’ ability to treat them.

The study, titled “Secondary thalamic dysfunction underlies abnormal large-scale neural dynamics in chronic stroke,” published in the journal Proceedings of the National Academy of Sciences, reveals that degeneration of the thalamus—an area of the brain distinct from the stroke lesion—is a significant contributor to post-stroke symptoms.

Inhibiting TLR7, an immune signaling protein, may help preserve the protective layer surrounding nerve fibers in the brain during both Alzheimer’s disease and ordinary aging, suggests a study led by researchers at Weill Cornell Medicine. The research is published in the journal Science.

Most in vertebrates are encased in sheaths made largely of myelin, a protein that protects the fibers and greatly enhances the efficiency of their signal conduction. The destruction of myelin sheaths—demyelination—can occur in the context of brain inflammation and can lead to cognitive, movement and other neurological problems. The phenomenon is seen in multiple sclerosis (MS), Alzheimer’s, Parkinson’s and other neurological conditions, as well as in ordinary aging.

Demyelination-linked disorders often show sex differences, and in the study, the researchers looked for underlying mechanisms of demyelination that might help explain these differences. Their experiments in mouse models of Alzheimer’s uncovered TLR7 as a driver of inflammatory demyelination especially in males, but also showed that removing or inhibiting this immune protein can protect against demyelination in both males and females.

THIS IS HUGE!! New study suggests that aging could be preventable, delayable and even reversible! A recent study published in Engineering proposes a new theory called pro aging metabolic reprogramming (PAMRP)


Aging is a complex process that has long puzzled scientists. A recent study published in Engineering proposes a new theory called pro-aging metabolic reprogramming (PAMRP), which could change our understanding of aging.

The traditional debate on aging has centered around whether it is a programmed process or a result of stochastic events. The PAMRP theory combines these two perspectives. It suggests that aging is driven by degenerative metabolic reprogramming over time. This involves both the buildup of pro-aging substrates (PASs) through and the emergence of pro-aging triggers (PATs). The combination of PASs and PATs leads to metabolic reprogramming, which in turn causes cellular and genetic reprogramming, ultimately resulting in the aging process.

Metabolism plays a crucial role in the PAMRP theory. As organisms age, there are significant changes in metabolic pathways, such as shifts in energy production and nutrient utilization. These changes initially serve as an adaptive mechanism but can become maladaptive over time, contributing to aging. The theory also distinguishes between different types of metabolic reprogramming, such as adaptive and adverse, and between regenerative and degenerative processes.

🚀 Q: How will Jared Isaacman’s background influence NASA’s future direction? A: Isaacman’s experience as a business leader, philanthropist, pilot, and astronaut will drive NASA towards a bold era of space economy development, focusing on groundbreaking achievements in space science, technology, and exploration.

🌠 Q: What is Isaacman’s vision for NASA’s mission? A: He aims to pursue a thriving space economy, transforming humanity into a space-faring civilization with breakthroughs in manufacturing, biotechnology, mining, and potentially new energy sources.

Quantum chaos, previously theoretical, has been observed experimentally, validating a 40-year-old theory about electrons forming patterns in confined spaces.

Using advanced imaging techniques on graphene, researchers confirmed “quantum scars,” where electrons follow unique closed orbits. These findings could revolutionize electronics by enabling efficient, low-power transistors and paving the way for novel quantum control methods. This discovery offers insights into chaotic quantum systems, bridging a gap between classical and quantum physics.

Patterns in chaos revealed in quantum space.