Menu

Blog

Page 340

Nov 23, 2024

Researchers identify brain regions where word meaning is retrieved

Posted by in categories: biotech/medical, engineering, neuroscience

A new study by researchers at the Medical College of Wisconsin (MCW) reveals the areas of the brain where the meanings of words are retrieved from memory and processed during language comprehension. Previous neuroimaging studies had indicated that large portions of the temporal, parietal, and frontal lobes participate in processing language meaning, but it was unknown which regions encoded information about individual word meanings.

“We found that word meaning was represented in several high-level (i.e., areas that are not closely connected to primary sensory or motor areas), including the classical ‘language areas’ known as Broca’s area and Wernicke’s area,” said Dr. Leonardo Fernandino, assistant professor of neurology and biomedical engineering at MCW. “Interestingly, however, some regions not previously considered as important for language processing were among those containing the most information about word meaning.”

Additionally, they also investigated whether the neural representations of word meaning in each of these areas contained information about phenomenological experience (i.e., related to different kinds of perceptual, emotional, and action-related experiences), as several researchers had previously proposed, or whether they contained primarily information about conceptual categories (i.e., natural kinds) or about word co-occurrence statistics, as other researchers have theorized.

Nov 23, 2024

Face detection in untrained deep neural networks

Posted by in categories: biological, mapping, robotics/AI

Researchers have explained how the regularly structured topographic maps in the visual cortex of the brain could arise spontaneously to efficiently process visual information. This research provides a new framework for understanding functional architectures in the visual cortex during early developmental stages.

A KAIST research team led by Professor Se-Bum Paik from the Department of Bio and Brain Engineering has demonstrated that the orthogonal organization of retinal mosaics in the periphery is mirrored onto the and initiates the clustered topography of higher visual areas in the brain.

This new finding provides advanced insights into the mechanisms underlying a biological strategy of brain circuitry for the efficient tiling of sensory modules. The study was published in Cell Reports on January 5.

Nov 23, 2024

A single biological factor predicts distinct cortical organizations across mammalian species

Posted by in categories: biological, engineering, mapping, neuroscience

Researchers have explained how visual cortexes develop uniquely across the brains of different mammalian species. A KAIST research team led by Professor Se-Bum Paik from the Department of Bio and Brain Engineering has identified a single biological factor, the retino-cortical mapping ratio, that predicts distinct cortical organizations across mammalian species.

This new finding has resolved a long-standing puzzle in understanding visual neuroscience regarding the origin of functional architectures in the visual cortex. The study, published in Cell Reports on March 10, demonstrates that the evolutionary variation of biological parameters may induce the development of distinct functional circuits in the visual cortex, even without -specific developmental mechanisms.

In the (V1) of mammals, neural tuning to visual stimulus orientation is organized into one of two distinct topographic patterns across species. While primates have columnar orientation maps, a salt-and-pepper type organization is observed in rodents.

Nov 23, 2024

Extending classical black hole inequalities into the quantum realm

Posted by in categories: cosmology, quantum physics

A recent study in Physical Review Letters explores quantum effects on black hole thermodynamics and geometry, focusing on extending two classical inequalities into the quantum regime.

Black holes have been thoroughly studied through a classical approach based on Einstein’s general theory of relativity. However, this approach does not account for quantum effects like Hawking radiation.

The goal of the study was for the researchers to refine classical theories by including quantum effects, thereby offering an improved understanding of black hole dynamics.

Nov 23, 2024

Oldest direct evidence of hot water activity on Mars found

Posted by in categories: chemistry, space

New Curtin University-led research has uncovered what may be the oldest direct evidence of ancient hot water activity on Mars, revealing the planet may have been habitable at some point in its past.

The study analyzed a 4.45 billion-year-old grain from the famous Martian meteorite NWA7034, also known as Black Beauty, and found geochemical “fingerprints” of -rich fluids.

Study co-author Dr. Aaron Cavosie from Curtin’s School of Earth and Planetary Sciences said the discovery opened up new avenues for understanding ancient Martian hydrothermal systems associated with magmatism, as well as the planet’s past habitability.

Nov 23, 2024

Neuroinflammation: An astrocyte perspective

Posted by in categories: biotech/medical, neuroscience

A 2023 Review in Science Translational Medicine looks at the complex connections between astrocytes and other types of cells in the nervous system, including neurons, oligodendrocytes, and microglia.

Nov 23, 2024

Freewill: Blame is better to give than recieve

Posted by in category: media & arts

RushThis belongs to anthem recordsthis is not my property and this is only being used for entertainment purposes.

Nov 23, 2024

Biohybrid neural interfaces: an old idea enabling a completely new space of possibilities

Posted by in categories: biotech/medical, neuroscience

We work to restore quality of life to those with debilitating conditions for which there are no treatment options.

Nov 23, 2024

Advanced treatment for pancreatic cancer helping patients recover faster

Posted by in category: biotech/medical

Nov 23, 2024

Dark matter’s search could be end by a nearby supernova explosion

Posted by in categories: cosmology, particle physics

Researchers at UC Berkeley proposed that axions, hypothetical particles, could be detected shortly after a supernova’s gamma rays. They suggest that the Fermi Gamma-ray Space Telescope has a 1 in 10 chance of observing this phenomenon. Axions would be produced during the early moments of a star’s collapse and would then transform into high-energy gamma rays in the star’s magnetic field.

Read Full Story

Page 340 of 12,384First337338339340341342343344Last