Toggle light / dark theme

Crispre cas 9.


A major issue in neuroscience is the poor translatability of research results from preclinical studies in animals to clinical outcomes. Comparative neuroscience can overcome this barrier by studying multiple species to differentiate between species-specific and general mechanisms of neural circuit functioning. Targeted manipulation of neural circuits often depends on genetic dissection, and use of this technique has been restricted to only a few model species, limiting its application in comparative research. However, ongoing advances in genomics make genetic dissection attainable in a growing number of species. To demonstrate the potential of comparative gene editing approaches, we developed a viral-mediated CRISPR/Cas9 strategy that is predicted to target the oxytocin receptor (Oxtr) gene in 80 rodent species. This strategy specifically reduced OXTR levels in all evaluated species (n = 6) without causing gross neuronal toxicity. Thus, we show that CRISPR/Cas9-based tools can function in multiple species simultaneously. Thereby, we hope to encourage comparative gene editing and improve the translatability of neuroscientific research.

The development of comparative gene editing strategies improves the translatability of animal research.

If I were a brilliant physicist, I would have written this.


Learn more about differential equations (and many other topics in maths and science) on Brilliant using the link https://brilliant.org/sabine. You can get started for free, and the first 200 will get 20% off the annual premium subscription.

Do humans have free will or to the laws of physics imply that such a concept is not much more than a fairy tale? Do we make decisions? Did the big bang start a chain reaction of cause and effects leading to the creation of this video? That’s what we’ll talk about today.

Usually, the two characterizations of a material are mutually exclusive: something is either stiff, or it can absorb vibrations well—but rarely both. However, if we could make materials that are both stiff and good at absorbing vibrations, there would be a whole host of potential applications, from design at the nanoscale to aerospace engineering.

A team of researchers from the University of Amsterdam has now found a way to create that are stiff, but still good at absorbing vibrations—and equally importantly, that can be kept very light-weight.

David Dykstra, lead author of the study published in the journal Advanced Materials, explains, “We discovered that the trick was to use materials that buckle, like thin metal sheets. When put together in a clever way, constructions made out of such buckled sheets become great absorbers of vibrations—but at the same time, they preserve a lot of the stiffness of the material they are made out of. Moreover, the sheets do not need to be very thick, and so the material can be kept relatively light.”

A scientist claims he has increased his lifespan by 20 percent after living 93 days underwater.

Joseph Dituri, 55, a retired Naval officer, has been living inside a 100-square-foot pod at the bottom of the Atlantic Ocean for 93 days, researching how a pressurized environment impacts the human body.

The mission was also designed to beat the world record for living underwater — the previous stay was 73 days.

A team from NIST and the University of Colorado Boulder have developed a novel device using gallium nitride nanopillars on silicon that significantly improves the conversion of heat into electricity. This could potentially recover large amounts of wasted heat energy, benefiting industries and power grids.

Researchers at the National Institute of Standards and Technology (NIST) have fabricated a novel device that could dramatically boost the conversion of heat into electricity. If perfected, the technology could help recoup some of the heat energy that is wasted in the U.S. at a rate of about $100 billion each year.

The new fabrication technique — developed by NIST researcher Kris Bertness and her collaborators — involves depositing hundreds of thousands of microscopic columns of gallium nitride atop a silicon wafer. Layers of silicon are then removed from the underside of the wafer until only a thin sheet of the material remains. The interaction between the pillars and the silicon sheet slows the transport of heat in the silicon, enabling more of the heat to convert to electric current. Bertness and her collaborators at the University of Colorado Boulder recently reported the findings in the journal Advanced Materials.

The James Webb Space Telescope is so powerful that it can vividly see stars in a galaxy 17 million light-years away.

Astronomers pointed the most advanced space observatory ever built at the galaxy NGC 5,068, peering deep into its starry core. The greater goal is to better grasp how stars, like our energy-providing sun, form and evolve in galaxies. Crucially, Webb views a type of light that’s invisible to the naked eye, called infrared light. These long infrared light waves pierce through thick clouds of cosmic dust and gas, allowing us unprecedented views into galactic hearts.

“With its ability to peer through the gas and dust enshrouding newborn stars, Webb is the perfect telescope to explore the processes governing star formation,” the European Space Agency, which collaborates on the telescope with NASA and the Canadian Space Agency, wrote. Solar systems born enveloped in cosmic dust simply can’t be seen with visible light telescopes like Hubble, the space agency said.