Toggle light / dark theme

Sightful, a startup based in Tel Aviv, is rolling out what it calls the world’s first augmented reality (AR) laptop following nearly three years of under-the-radar development.

Designed for the “work from anywhere” movement, the 13-inch Spacetop takes full advantage of AR to transform the area around users into 100 inches of virtual screen space.

Spacetop’s multi-monitor “Canvas” can display all open apps and windows, overlaid on the real world yet invisible to anyone except the user wearing the customized NReal AR glasses that come with the device. There are no gesture controls to learn, and no external hardware to integrate.

Severe brain injuries or head traumas in humans can lead to various stages of so-called disorders of consciousness (DoC). These are states in which consciousness is either partly or entirely absent, such as a coma; unresponsive wakefulness syndrome, also known as a vegetative state; and minimally conscious state.

Accurately evaluating who have lost consciousness is of crucial importance, as it allows doctors to determine what treatments to administer and how to facilitate the re-emergence of consciousness. Typically, to clinically evaluate consciousness, doctors observe the behavior of patients in response to , such as sounds or images.

For instance, while patients in a are awake but continue to be unresponsive to , patients with MCS exhibit some behaviors that indicate that they are conscious. So far, most methods to assess the consciousness level of patients rely on sounds or , yet olfactory stimuli could potentially prove useful too.

In a new landmark study, University of Minnesota research shows surprising links between human cognition and personality—pillars of human individuality that shape who we are and how we interact with the world. Personality influences our actions, emotions and thoughts, defining whether we are extroverted, polite, persistent, curious or anxious.

On the other hand, cognitive ability is the umbrella that reflects our capability for navigating complexity, such as articulating language, grasping intricate mathematics and drawing logical conclusions. Despite the prevailing belief that certain connections exist—for instance, introverted individuals are often perceived as more intelligent—scientists lacked a comprehensive understanding of these intricate connections.

The research, published in the Proceedings of the National Academy of Sciences, synthesizes data from over 1,300 studies from the past century, representing more than 2 million participants from 50 countries and integrating data from , test manuals, military databases, previously unpublished datasets and even proprietary databases of private companies.

A new demonstration involving hundreds of entangled atoms tests Schrödinger’s interpretation of Einstein, Rosen, and Podolsky’s classic thought experiment.

In 1935, Einstein, Podolsky, and Rosen (EPR) presented an argument that they claimed implies that quantum mechanics provides an incomplete description of reality [1]. The argument rests on two assumptions. First, if the value of a physical property of a system can be predicted with certainty, without disturbance to the system, then there is an “element of reality” to that property, meaning it has a value even if it isn’t measured. Second, physical processes have effects that act locally rather than instantaneously over a distance. John Bell subsequently proposed a way to experimentally test these “local realism” assumptions [2], and so-called Bell tests have since invalidated them for systems of a few small particles, such as electrons or photons [3].

An unusual kind of superconductor harbors magnetic vortices that researchers predict should be readily observable thanks to the striped configurations they adopt.

In a nematic superconductor, electron pairs are bound more strongly in one, spontaneously chosen, lattice direction than in the others. This rotational symmetry breaking of the pairs’ wave function is just one of this type of superconductor’s unusual properties. A leading candidate to exhibit nematic superconductivity, copper-doped bismuth selenide, is also predicted to sustain surface charge-carrying quasiparticles known as Majorana fermions, which researchers think could be used for superconducting quantum technologies. What’s more, nematic superconductors harbor topological solitons known as skyrmions, whose complexity gives them many ways to arrange themselves and whose small size and low energy have attracted interest for data storage technologies. Now Thomas Winyard of the University of Edinburgh, UK, and colleagues have calculated the various skyrmion configurations that could arise in a nematic superconductor [1, 2].

The physicist Tony Skyrme came up with the concept of a skyrmion in 1961 when working on a particle physics problem. In the 2000s, the quasiparticle was then linked to condensed-matter systems when it was discovered that quasiparticles could also be used to explain magnetic vortices in certain thin films.

Advanced communication technologies, such as the fifth generation (5G) mobile network and the internet of things (IoT) can greatly benefit from devices that can support wireless communications while consuming a minimum amount of power. As most existing devices have separate components to perform computations and transmit data, reducing their energy consumption can be challenging.

Researchers at Nanjing University, Southeast University and Purple Mountain Laboratories in China recently devised a parallel in-memory wireless computing scheme that performs computations and concurrently on the same hardware. This design, introduced in Nature Electronics, is based on the use of mermristive crossbar arrays, grid-like structures containing memristors, electrical components that can both process and store data.

“In one of our previous works published in Nature Nanotechnology, we proposed the realization of massively parallel in-memory computing by using continuous-time data representation in a nanoscale crossbar array,” Shi-Jun Liang, one of the researchers who carried out the recent study, told Tech Xplore.