Toggle light / dark theme

Researchers in Canada and the United States have used deep learning to derive an antibiotic that can attack a resistant microbe, acinetobacter baumannii, which can infect wounds and cause pneumonia. According to the BBC, a paper in Nature Chemical Biology describes how the researchers used training data that measured known drugs’ action on the tough bacteria. The learning algorithm then projected the effect of 6,680 compounds with no data on their effectiveness against the germ.

In an hour and a half, the program reduced the list to 240 promising candidates. Testing in the lab found that nine of these were effective and that one, now called abaucin, was extremely potent. While doing lab tests on 240 compounds sounds like a lot of work, it is better than testing nearly 6,700.

Interestingly, the new antibiotic seems only to be effective against the target microbe, which is a plus. It isn’t available for people yet and may not be for some time — drug testing being what it is. However, this is still a great example of how machine learning can augment human brainpower, letting scientists and others focus on what’s really important.

Contemporary DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Crispre cas 9.


A major issue in neuroscience is the poor translatability of research results from preclinical studies in animals to clinical outcomes. Comparative neuroscience can overcome this barrier by studying multiple species to differentiate between species-specific and general mechanisms of neural circuit functioning. Targeted manipulation of neural circuits often depends on genetic dissection, and use of this technique has been restricted to only a few model species, limiting its application in comparative research. However, ongoing advances in genomics make genetic dissection attainable in a growing number of species. To demonstrate the potential of comparative gene editing approaches, we developed a viral-mediated CRISPR/Cas9 strategy that is predicted to target the oxytocin receptor (Oxtr) gene in 80 rodent species. This strategy specifically reduced OXTR levels in all evaluated species (n = 6) without causing gross neuronal toxicity. Thus, we show that CRISPR/Cas9-based tools can function in multiple species simultaneously. Thereby, we hope to encourage comparative gene editing and improve the translatability of neuroscientific research.

The development of comparative gene editing strategies improves the translatability of animal research.

If I were a brilliant physicist, I would have written this.


Learn more about differential equations (and many other topics in maths and science) on Brilliant using the link https://brilliant.org/sabine. You can get started for free, and the first 200 will get 20% off the annual premium subscription.

Do humans have free will or to the laws of physics imply that such a concept is not much more than a fairy tale? Do we make decisions? Did the big bang start a chain reaction of cause and effects leading to the creation of this video? That’s what we’ll talk about today.

Usually, the two characterizations of a material are mutually exclusive: something is either stiff, or it can absorb vibrations well—but rarely both. However, if we could make materials that are both stiff and good at absorbing vibrations, there would be a whole host of potential applications, from design at the nanoscale to aerospace engineering.

A team of researchers from the University of Amsterdam has now found a way to create that are stiff, but still good at absorbing vibrations—and equally importantly, that can be kept very light-weight.

David Dykstra, lead author of the study published in the journal Advanced Materials, explains, “We discovered that the trick was to use materials that buckle, like thin metal sheets. When put together in a clever way, constructions made out of such buckled sheets become great absorbers of vibrations—but at the same time, they preserve a lot of the stiffness of the material they are made out of. Moreover, the sheets do not need to be very thick, and so the material can be kept relatively light.”

A scientist claims he has increased his lifespan by 20 percent after living 93 days underwater.

Joseph Dituri, 55, a retired Naval officer, has been living inside a 100-square-foot pod at the bottom of the Atlantic Ocean for 93 days, researching how a pressurized environment impacts the human body.

The mission was also designed to beat the world record for living underwater — the previous stay was 73 days.

A team from NIST and the University of Colorado Boulder have developed a novel device using gallium nitride nanopillars on silicon that significantly improves the conversion of heat into electricity. This could potentially recover large amounts of wasted heat energy, benefiting industries and power grids.

Researchers at the National Institute of Standards and Technology (NIST) have fabricated a novel device that could dramatically boost the conversion of heat into electricity. If perfected, the technology could help recoup some of the heat energy that is wasted in the U.S. at a rate of about $100 billion each year.

The new fabrication technique — developed by NIST researcher Kris Bertness and her collaborators — involves depositing hundreds of thousands of microscopic columns of gallium nitride atop a silicon wafer. Layers of silicon are then removed from the underside of the wafer until only a thin sheet of the material remains. The interaction between the pillars and the silicon sheet slows the transport of heat in the silicon, enabling more of the heat to convert to electric current. Bertness and her collaborators at the University of Colorado Boulder recently reported the findings in the journal Advanced Materials.