Toggle light / dark theme

Nearly two decades have passed since the advent of graphene.

Graphene is an allotrope of carbon in the form of a single layer of atoms in a two-dimensional hexagonal lattice in which one atom forms each vertex. It is the basic structural element of other allotropes of carbon, including graphite, charcoal, carbon nanotubes, and fullerenes. In proportion to its thickness, it is about 100 times stronger than the strongest steel.

A team of physicists, including University of Massachusetts assistant professor Tigran Sedrakyan, recently announced in the journal Nature that they have discovered a new phase of matter. Called the “chiral bose-liquid state,” the discovery opens a new path in the age-old effort to understand the nature of the physical world.

Under everyday conditions, matter can be a solid, liquid, or gas. But once you venture beyond the everyday—into temperatures approaching absolute zero.

Absolute zero is the theoretical lowest temperature on the thermodynamic temperature scale. At this temperature, all atoms of an object are at rest and the object does not emit or absorb energy. The internationally agreed-upon value for this temperature is −273.15 °C (−459.67 °F; 0.00 K).

After Russian hackers destroyed Viasat satellite ground receivers spanning Europe, SpaceX provided coverage via Starlink, its Lower Earth Orbit satellite constellation, and soon began noticing cyberattacks and software interferences. Now, a year later, the U.S. Department of Defense announced Russia is still attempting to complicate connections within the satellite constellation and others like it.

Documents were leaked by U.S. National Guard airman Ryan Teixeira, as reported by The Washington Post back in April of 2023. Ukraine has also stated it is experiencing similar security issues.

“Russia’s quest to sabotage Ukrainian forces’ internet access by targeting the Starlink satellite operations that billionaire Elon Musk has provided to Kyiv since the war’s earliest days appear to be more advanced than previously known, according to a classified U.S. intelligence report.”

SpaceX’s Falcon 9 carrying the PSN Satria satellite successfully launched and deployed at 6:21 PM ET (22:21 UTC).

The launch had a 178-minute window, and upper-level winds delayed the first launch attempt at the opening of the window, but SpaceX had plenty of time to work with and launched just a bit later into the launch window.

The PSN Satria Indonesian Telecommunications was first contracted to be built in 2020 by Thales Alenia Spaceby the Indonesian government and delivered to the launch site in Cape Canaveral, Florida, in May 2023.

Scientists from the HIV Cure Center at the UNC School of Medicine, University of California San Diego, Emory University, and University of Pennsylvania have been searching for where exactly these latent cells are hiding in the body. New research published in the Journal of Clinical Investigations confirms that microglial cells – which are specialized immune cells with a decade-long lifespan in the brain – can serve as a stable viral reservoir for latent HIV.


Yuyang Tang, PhD, and Guochun Jiang, PhD, in the UNC School of Medicine extracted living brain tissue to conclude that specialized immune cells in the brain can harbor latent but replication-competent HIV.

As a part of its life cycle, the human immunodeficiency virus-1 (HIV) inserts a copy of its DNA into human immune cells. Some of these newly infected immune cells can then transition into a dormant, latent state for a long period of time, which is referred to as HIV latency.

Although current therapies, such current antiretroviral therapy (ART), can successfully block the virus from replicating further, it cannot eradicate latent HIV. If treatment is ever discontinued, the virus can rebound from latency and reignite the progression of HIV infection to AIDS.

A new high-performance metal alloy, called a superalloy, could help boost the efficiency of the turbines used in power plants and the aerospace and automotive industries.

Created using a 3D printer, the superalloy is composed of a blend of six elements that altogether form a material that’s both lighter and stronger than the standard materials used in conventional turbine machinery. The strong superalloy could help industries cut both costs and carbon emissions — if the approach can be successfully scaled up.

The challenge: In the world of materials science, the search for new metal alloys has been heating up in recent years. For over a century, we’ve depended on relatively simple alloys like steel, composed of 98% iron, to form the backbone of our manufacturing and construction industries. But today’s challenges demand more: alloys that can withstand higher temperatures and remain strong under stress, yet still be lightweight.