Toggle light / dark theme

This discrepancy, known as the Hubble Tension, has challenged our understanding of the universe’s fundamental nature.

Now, new observations from the powerful James Webb Space Telescope (JWST) has deepened this perplexing enigma.

JWST measured the distances between stars and galaxies, which confirmed earlier measurements made by the Hubble Space Telescope.

Globally, approximately 139 million people are expected to have Alzheimer’s disease (AD) by 2050. Magnetic resonance imaging (MRI) is an important tool for identifying changes in brain structure that precede cognitive decline and progression with disease; however, its cost limits widespread use.

A new study by investigators from Massachusetts General Hospital (MGH), a founding member of the Mass General Brigham health care system, demonstrates that a simplified, low magnetic field (LF) MRI machine, augmented with machine learning tools, matches conventional MRI in measuring brain characteristics relevant to AD. Findings, published in Nature Communications, highlight the potential of the LF-MRI to help evaluate those with cognitive symptoms.

“To tackle the growing, global health challenge of dementia and cognitive impairment in the aging population, we’re going to need simple, bedside tools that can help determine patients’ underlying causes of cognitive impairment and inform treatment,” said senior author W. Taylor Kimberly, MD, Ph.D., chief of the Division of Neurocritical Care in the Department of Neurology at MGH.

Failing hearts nearly returned to full function in laboratory pigs after they received an experimental gene therapy.

New research shows the gene therapy didn’t just prevent heart failure from worsening in four lab pigs, but actually prompted hearts to repair and grow stronger.

“Even though the animals are still facing stress on the heart to induce heart failure, we saw recovery of heart function and that the heart also stabilizes or shrinks,” said co-senior researcher Dr. TingTing Hong, an associate professor of pharmacology and toxicology at the University of Utah.

In a recent study published in the journal Nature Aging, researchers identified plasma proteomic biomarkers and dynamic changes associated with brain aging, leveraging a multimodal approach combining brain age gap (BAG) and proteome-wide association analysis.

Background

The global aging population is expected to exceed 1.5 billion individuals aged 65 and above by 2050, highlighting the urgent need to address aging-associated challenges.

Achieving the aggregation of different mutation types at multiple genomic loci and generating transgene-free plants in the T0 generation is an important goal in crop breeding. Although prime editing (PE), as the latest precise gene editing technology, can achieve any type of base substitution and small insertions or deletions, there are significant differences in efficiency between different editing sites, making it a major challenge to aggregate multiple mutation types within the same plant.

Recently, a collaborative research team led by Li Jiayang from the Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Science, developed a multiplex gene editing tool named the Cas9-PE system, capable of simultaneously achieving precise editing and site-specific random mutagenesis in rice.

By co-editing the ALSS627I gene to confer resistance to the herbicide bispyribac-sodium (BS) as a selection marker, and using Agrobacterium-mediated transient transformation, the researchers also achieved transgene-free gene editing in the T0 generation.

Neutrino astronomy enters a new era as ARCA tracks an ultra-high-energy particle, potentially the most powerful ever.


The ARCA observatory detects potentially the most energetic neutrino, opening new frontiers in neutrino astronomy and cosmic event studies.

The orbits of the planets around the Sun have been the source for many a scientific debate. Their current orbital properties are well understood but the planetary orbits have evolved and changed since the formation of the Solar System.

Planetary migrations have been the most prominent idea of recent decades suggesting that planetary interactions caused the young planets to migrate inwards or outwards from their original positions.

Now a new theory suggests a 2–50 Jupiter-mass object passing through the Solar System could be the cause.

Researchers at the UChicago Pritzker School of Molecular Engineering (UChicago PME) have realized a new design for a superconducting quantum processor, aiming at a potential architecture for the large-scale, durable devices the quantum revolution demands.

Unlike the typical quantum chip design that lays the information-processing qubits onto a 2D grid, the team from the Cleland Lab has designed a modular quantum processor comprising a reconfigurable router as a central hub. This enables any two qubits to connect and entangle, where in the older system, qubits can only talk to the qubits physically nearest to them.

“A quantum computer won’t necessarily compete with a classical computer in things like memory size or CPU size,” said UChicago PME Prof. Andrew Cleland.

Ultra-high energy cosmic rays, which emerge in extreme astrophysical environments—like the roiling environments near black holes and neutron stars—have far more energy than the energetic particles that emerge from our sun. In fact, the particles that make up these streams of energy have around 10 million times the energy of particles accelerated in the most extreme particle environment on earth, the human-made Large Hadron Collider.

Where does all that energy come from? For many years, scientists believed it came from shocks that occur in extreme astrophysical environments—when, for example, a star explodes before forming a black hole, causing a huge explosion that kicks up particles.

That theory was plausible, but, according to new research published in The Astrophysical Journal Letters, the observations are better explained by a different mechanism. The source of the cosmic rays’ energy, the researchers found, is more likely magnetic turbulence. The paper’s authors found that magnetic fields in these environments tangle and turn, rapidly accelerating particles and sharply increasing their energy up to an abrupt cutoff.