Toggle light / dark theme

STING (short for stimulator of interferon genes) is considered one of the major factors that triggers the immune response in the context of infection, autoimmunity, and cancer. The signaling protein turns on genes involved in cell defense. Now, a team of MIT and Harvard Medical School researchers has discovered that STING can also act as an ion channel that allows protons to leak out of an organelle known as the Golgi body. This makes it the first human immune sensor that can translate danger signals into ion flow.

The findings are published in the journal Science in an article titled, “Human STING is a proton channel.”

“Proton leakage from organelles is a common signal for noncanonical light chain 3B (LC3B) lipidation and inflammasome activation, processes induced upon stimulator of interferon genes (STING) activation,” wrote the researchers. “On the basis of structural analysis, we hypothesized that human STING is a proton channel. Indeed, we found that STING activation induced a pH increase in the Golgi and that STING reconstituted in liposomes enabled transmembrane proton transport.”

A drug that causes animals to grow new teeth is heading to clinical trials. If it proves safe and effective in people, it could one day allow us to regenerate teeth lost to injury, disease, or old age.

The challenge: 17% of Americans will lose all of their teeth by the time they’re 65, and the vast majority of us will lose at least some teeth as we get older.

While dentures or implants can replace these lost teeth, one can feel less-than-natural, and the other requires surgery.

The write in their paper on the invention: “The LK-99 has many possibilities for various applications such as magnet, motor, cable, levitation train, power cable, qubit for a quantum computer, THz Antennas, etc. We believe that our new development will be a brand-new historical event that opens a new era for humankind.”

It’s important to note that while room-temperature superconducting advances may clear some of the scalability hurdles, warm temperatures still impact quantum errors.

That being said, and while scientists are still trying to verify this work, how will it affect quantum computing? If at all?

Collaboration yields new solutions that tackle complex challenges in defense and aerospace sectors

Companies to showcase live demonstration of quantum-hybrid application at Space & Missile Defense Symposium

BURNABY, British Columbia, PALO ALTO, Calif. & HUNTSVILLE, Ala., August 7, 2023 —(BUSINESS WIRE)— D-Wave Quantum Inc. (NYSE: QBTS), a leader in quantum computing systems, software, and services, and Davidson Technologies, Inc., a technology services company that provides innovative engineering, technical and management solutions for the Department of Defense, aerospace and commercial customers, today announced progress in their collaboration to create solutions that advance national defense efforts. In support of the companies’ joint presence at this week’s Space and Missile Defense Symposium, D-Wave and Davidson Technologies revealed that together they have built two applications, focused on interceptor assignment and optimized radar scheduling.

Cellular therapies like chimeric antigen receptor (CAR) T cells could represent a promising new avenue by which to treat autoimmune diseases, according to a recent review article. The authors cautioned, however, that most of the research testing CAR-based therapies has been in very early-stage trials.

CAR T cells are human cells that have been genetically modified to express a synthetic receptor, The cells have been used successfully as a therapy in several types of cancer, such as large B-cell lymphoma and multiple myeloma.


Manipulating T cells to target cancer cells has worked to treat some cancers. Researchers are investigating whether the same approach might be used to curb the dysregulated immune response that underlies autoimmune disease.