Menu

Blog

Page 3046

Apr 12, 2023

‘Alien Calculus’ Could Save Particle Physics From Infinities

Posted by in categories: information science, mathematics, particle physics

In the math of particle physics, every calculation should result in infinity. Physicists get around this by just ignoring certain parts of the equations — an approach that provides approximate answers. But by using the techniques known as “resurgence,” researchers hope to end the infinities and end up with perfectly precise predictions.

Apr 12, 2023

Basic arithmetic with the quantum Fourier transform (QFT)¶

Posted by in category: quantum physics

Learn how to use the quantum Fourier transform (QFT) to do basic arithmetic.

Apr 12, 2023

Researchers Use Quantum Biology to Understand Human Response to Earth’s Magnetic Field

Posted by in categories: biological, quantum physics

Shortly after Max Planck shook the scientific world with ideas about the fundamental quantization of energy, researchers built and leveraged theories of quantum mechanics to resolve physical phenomena that had previously been unexplainable, including the behavior of heat in solids and light absorption on an atomic level. In the 120-plus years since, researchers have looked beyond physics and used quantum theory’s same perplexing — even “spooky,” according to Einstein — laws to solve inexplicable phenomena in a variety of other disciplines.

Today, researchers at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, are applying quantum mechanics to biology to better understand of one of nature’s biggest mysteries — magnetosensitivity, an organism’s ability to sense Earth’s magnetic field and use it as a tool to adjust some biological processes. And they’ve found some surprising results.

Continue reading “Researchers Use Quantum Biology to Understand Human Response to Earth’s Magnetic Field” »

Apr 12, 2023

A Computational Quantum-Based Perspective on the Molecular Origins of Life’s Building Blocks

Posted by in categories: chemistry, computing, information science, quantum physics, space

Exciting.


The search for the chemical origins of life represents a long-standing and continuously debated enigma. Despite its exceptional complexity, in the last decades the field has experienced a revival, also owing to the exponential growth of the computing power allowing for efficiently simulating the behavior of matter—including its quantum nature—under disparate conditions found, e.g., on the primordial Earth and on Earth-like planetary systems (i.e., exoplanets). In this minireview, we focus on some advanced computational methods capable of efficiently solving the Schrödinger equation at different levels of approximation (i.e., density functional theory)—such as ab initio molecular dynamics—and which are capable to realistically simulate the behavior of matter under the action of energy sources available in prebiotic contexts.

Apr 12, 2023

The Electron Is So Round That It’s Ruling Out New Particles

Posted by in category: particle physics

If the electron’s charge wasn’t perfectly round, it could reveal the existence of hidden particles. A new measurement approaches perfection.

Apr 12, 2023

Mathematicians Find Hidden Structure in a Common Type of Space

Posted by in category: mathematics

In 50 years of searching, mathematicians found only one example of a “subspace design” in a vector space. A new proof reveals that there are infinitely more out there.

Apr 12, 2023

Researchers shows the key driver of Alzheimer’s disease

Posted by in categories: biotech/medical, neuroscience

Alzheimer’s disease is a neurodegenerative disease that affects millions of people worldwide. It is characterized by the accumulation of amyloid plaques and disordered protein fibers called tau tangles in the brain, which lead to cognitive impairment and dementia. Scientists have long been trying to understand the underlying mechanisms behind Alzheimer’s disease and find effective treatments for the condition.

Apr 12, 2023

Physicists take step toward fault-tolerant quantum computing

Posted by in categories: computing, particle physics, quantum physics

Some classical computers have error correction built into their memories based on bits; quantum computers, to be workable in the future, will need error correction mechanisms, too, based on the vastly more sensitive qubits.

Cornell researchers have recently taken a step toward fault-tolerant quantum computing: they constructed a simple model containing exotic particles called non-Abelian anyons, compact and practical enough to run on modern quantum hardware. Realizing these particles, which can only exist in two dimensions, is a move towards implementing it in the real world.

Thanks to some creative thinking, Yuri Lensky, a former Bethe/Wilkins/Kavli Institute at Cornell (KIC) postdoctoral fellow in physics in the College of Arts and Sciences (A&S), collaborating with Eun-Ah Kim, professor of physics (A&S), came up with a simple “recipe” that could be used for robustly computing with non-Abelian anyons, including specific instructions for executing the effect experimentally on devices available today.

Apr 12, 2023

Could AI allow humans to live forever?

Posted by in categories: life extension, robotics/AI

Science_Hightech — operanewsapp.

Apr 12, 2023

An ancient gene stolen from bacteria set the stage for human sight

Posted by in categories: biotech/medical, computing, genetics

Hoping to improve on those earlier efforts, Matthew Daugherty, a biochemist at the University of California San Diego, and colleagues used sophisticated computer software to trace the evolution of hundreds of human genes by searching for similar sequences in hundreds of other species. Genes that seemed to have appeared first in vertebrates and had no predecessors in earlier animals were good candidates for having jumped across from bacteria, particularly if they had counterparts in modern microbes. Among the dozens of potentially alien genes, one “blew me away,” Daugherty recalls.

The gene, called IRBP (for interphotoreceptor retinoid-binding protein), was already known to be important for seeing. The protein it encodes resides in the space between the retina and the retinal pigment epithelium, a thin layer of cells overlying the retina. In the vertebrate eye, when light hits a light-sensitive photoreceptor in the retina, vitamin A complexes become kinked, setting off an electrical pulse that activates the optic nerve. IRBP then shifts these molecules to the epithelium to be unkinked. Finally, it shuttles the restored molecules back to the photoreceptor. “IRBP,” Zhu explains, “is essential for the vision of all vertebrates.”

Vertebrate IRBP most closely resembles a class of bacterial genes called pepsidases, whose proteins recycle other proteins. Since IRBP is found in all vertebrates but generally not in their closest invertebrate relatives, Daugherty and his colleagues propose that more than 500 million years ago microbes transferred a pepsidase gene into an ancestor of all living vertebrates. Once the gene was in place, the protein’s recycling function was lost and the gene duplicated itself twice, explaining why IRBP has four copies of the original pepsidase DNA. Even in its microbial forebears, this protein may have had some ability to bind to light-sensing molecules, Daugherty suggests. Other mutations then completed its transformation into a molecule that could escape from cells and serve as a shuttle.