Toggle light / dark theme

Summry: New research reveals that dopamine plays a crucial role in teaching young male mice to fight, with the chemical’s influence diminishing as they gain experience. In novice fighters, boosting dopamine increased aggression, while blocking it stopped them from fighting.

However, experienced fighters showed no changes in behavior regardless of dopamine manipulation, highlighting the role of experience in shaping aggression. The study identifies the lateral septum as a key brain region for “aggression learning” in males, but no similar effect was observed in females.

For the first time ever, scientists have managed to snap a picture of an electron’s shape while it moves through a solid. While it doesn’t sound remotely impressive for the average Joe, this discovery gives us a whole new way to look at electrons.

This photographic achievement could lead to big changes in things like quantum computers, futuristic electronics, and maybe even gadgets we haven’t imagined yet. The research was led by physicist Riccardo Comin, a professor at MIT, along with a team of collaborators from various institutions.

“We’ve essentially created a blueprint for uncovering completely new insights that were out of reach before,” explains Comin. His colleague and co-author, Mingu Kang, carried out much of the work at MIT before continuing his research at Cornell University.

A large research team led by nanotechnologist Roy van der Meel rebuilt the body’s own proteins and fats into nano-delivery vans that get genetic medicines to exactly the right place in the body. In a joint effort with researchers from Radboudumc, they worked for five years on this nanotransport system, the results of which were published in Nature Nanotechnology.

With his rugged beard and signature lumberjack shirt, nanotechnologist Roy van der Meel seems to have walked straight out of a Canadian forest hut instead of a high-tech lab. In Canada, Van der Meel did indeed work as a postdoc for Professor Pieter Cullis, founder of the nanotechnology used for messenger RNA vaccines. Five years ago, he exchanged Vancouver for a spot in Eindhoven. Professor Willem Mulder brought Van der Meel to TU/e because of his RNA nanotechnology expertise.

Diseases that are currently difficult to cure, such as certain cancers and , can benefit from genetic drugs based on RNA. But then we must be able to get those medicines to the right place and that turns out to be a huge task.

Recent research demonstrates that brain organoids can indeed “learn” and perform tasks, thanks to AI-driven training techniques inspired by neuroscience and machine learning. AI technologies are essential here, as they decode complex neural data from the organoids, allowing scientists to observe how they adjust their cellular networks in response to stimuli. These AI algorithms also control the feedback signals, creating a biofeedback loop that allows the organoids to adapt and even demonstrate short-term memory (Bai et al. 2024).

One technique central to AI-integrated organoid computing is reservoir computing, a model traditionally used in silicon-based computing. In an open-loop setup, AI algorithms interact with organoids as they serve as the “reservoir,” for processing input signals and dynamically adjusting their responses. By interpreting these responses, researchers can classify, predict, and understand how organoids adapt to specific inputs, suggesting the potential for simple computational processing within a biological substrate (Kagan et al. 2023; Aaser et al. n.d.).

As people age, their memory and thinking skills naturally decline. Approximately 15% of older adults experience mild cognitive impairment, a major risk factor for dementia and other forms of dementia such as Alzheimer’s disease.

Since cognitive decline and dementia are growing public health concerns, scientists are working to better understand the risk factors and find ways to reduce them. One emerging area of research suggests that oral health may play a role in brain health.

Now, a new study suggests that the bacteria living in the mouth may influence cognitive function as people age, with some harmful bacteria possibly contributing to the development of dementia and Alzheimer’s disease.

Wireless communications technology has transformed the world, but the devices, which are quickly growing in number, require a consistent and ample source of power. Dong et al. developed a transparent device that harvests energy from two sources — radio waves and the sun — to power a wide range of wireless devices.

The breakthrough represents a significant step forward in optimizing energy conversion, since previous systems typically focused on harvesting either radio frequency or solar power, but not both. For example, coupling the energy harvester device with a solar cell increases the solar cell’s maximum power output by 13.11%. Furthermore, the device demonstrates an optical transparency of over 80 percent, allowing it to be invisibly integrated into many next-generation wireless technologies as both an energy harvester and a light transmitter.


Device may make smart windows and the Internet of Things more energetically sustainable.

WASHINGTON — As the demand for digital security grows, researchers have developed a new optical system that uses holograms to encode information, creating a level of encryption that traditional methods cannot penetrate. This advance could pave the way for more secure communication channels, helping to protect sensitive data.

“From rapidly evolving digital currencies to governance, healthcare, communications and social networks, the demand for robust protection systems to combat digital fraud continues to grow,” said research team leader Stelios Tzortzakis from the Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas and the University of Crete, both in Greece.


Optica is the leading society in optics and photonics. Quality information and inspiring interactions through publications, meetings, and membership.