Toggle light / dark theme

PUNCH Mission Prepares for Launch

Four small spacecraft, each about the size of a suitcase, are set to launch from Vandenberg Space Force Base in California no earlier than February 28. Designed and built by the Southwest Research Institute (SwRI) in San Antonio, these spacecraft are part of NASA’s Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission. They will share a ride into space with NASA’s Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx) observatory.

MIT physicists report the unexpected discovery of electrons forming crystalline structures in a material only billionths of a meter thick. The work adds to a gold mine of discoveries originating from the material, which the same team discovered only about three years ago.

In a paper published Jan. 22 in Nature, the team describes how electrons in devices made, in part, of the new material can become solid, or form crystals, by changing the voltage applied to the devices when they are kept at a temperature similar to that of outer space. Under the same conditions, they also showed the emergence of two new electronic states that add to work they reported last year showing that electrons can split into fractions of themselves.

The physicists were able to make the discoveries thanks to new custom-made filters for better insulation of the equipment involved in the work. These allowed them to cool their devices to a temperature an order of magnitude colder than they achieved for the earlier results.

You can learn a lot from a little slime mold. For Nate Cira, assistant professor of biomedical engineering in Cornell Engineering, the tiny eukaryotic organism provided inspiration for modeling “traveling networks”—connected systems that move by rearranging their structure.

Understanding these networks could help explain the structures and movements of certain biological systems and human organizations, from protein units that reassemble themselves to corporations expanding their product lines.

The findings were published Feb. 26 in Nature Communications.

A research team led by Professor Takayuki Hoshino of Nagoya University’s Graduate School of Engineering in Japan has demonstrated the world’s smallest shooting game by manipulating nanoparticles in real time, resulting in a game that is played with particles approximately 1 billionth of a meter in size.

This research is a significant step toward developing a computer interface system that seamlessly integrates virtual objects with real nanomaterials. They published their study in the Japanese Journal of Applied Physics.

The game demonstrates what the researchers call “nano-mixed reality (MR),” which integrates digital technology with the physical nanoworld in real time using high-speed electron beams. These beams generate dynamic patterns of electric fields and on a display surface, allowing researchers to control the force field acting on the nanoparticles in real time to move and manipulate them.

Quantum computers could be made with fewer overall components, thanks to technology inspired by Schrödinger’s cat. A team of researchers from Amazon Web Services has used “bosonic cat qubits,” to improve the ability of quantum computers to correct errors. The demonstration of quantum error correction requiring reduced hardware overheads is reported in a paper published in Nature.

The system uses so-called cat (qubits are the quantum equivalent to classical computing bits), which are designed to be resistant against certain types of noise and errors that might disrupt the output of quantum systems. This approach requires fewer overall components to achieve quantum error correction than other designs.

Quantum computers are prone to errors, which limits their potential to exceed the capabilities of classical computers at certain tasks. Quantum error correction is a method that helps reduce errors by spreading information over multiple qubits, allowing the identification and correction of errors without corrupting the computation. However, most approaches to quantum error correction typically rely on a large number of additional qubits to provide sufficient protection against errors, potentially leading to an overall decrease in efficiency.

In a breakthrough that could transform bioelectronic sensing, an interdisciplinary team of researchers at Rice University has developed a new method to dramatically enhance the sensitivity of enzymatic and microbial fuel cells using organic electrochemical transistors (OECTs). The research was recently published in the journal Device.

The innovative approach amplifies electrical signals by three orders of magnitude and improves signal-to-noise ratios, potentially enabling the next generation of highly sensitive, low-power biosensors for health and .

“We have demonstrated a simple yet powerful technique to amplify weak bioelectronic signals using OECTs, overcoming previous challenges in integrating fuel cells with electrochemical sensors,” said corresponding author Rafael Verduzco, professor of chemical and biomolecular engineering and materials science and nanoengineering. “This method opens the door to more versatile and efficient biosensors that could be applied in medicine, environmental monitoring and even wearable technology.”

A study published in Science Advances sheds new light on the mysterious origins of free-floating planetary-mass objects (PMOs)—celestial bodies with masses between stars and planets.

Led by Dr. Deng Hongping of the Shanghai Astronomical Observatory of the Chinese Academy of Sciences, an international team of astronomers, used advanced simulations to uncover a novel formation process for these enigmatic objects. The research suggests that PMOs can form directly through violent interactions between circumstellar disks in young star clusters.

Laying the groundwork for quantum communication systems of the future, engineers at Caltech have demonstrated the successful operation of a quantum network of two nodes, each containing multiple quantum bits, or qubits—the fundamental information-storing building blocks of quantum computers.

To achieve this, the researchers developed a new protocol for distributing in a parallel manner, effectively creating multiple channels for sending data, or multiplexing. The work was accomplished by embedding ytterbium atoms inside crystals and coupling them to optical cavities—nanoscale structures that capture and guide light. This platform has unique properties that make it ideal for using multiple qubits to transmit quantum information-carrying photons in parallel.

“This is the first-ever demonstration of entanglement multiplexing in a quantum network of individual spin qubits,” says Andrei Faraon (BS ‘04), the William L. Valentine Professor of Applied Physics and Electrical Engineering at Caltech. “This method significantly boosts quantum communication rates between nodes, representing a major leap in the field.”

Researchers at the National Graphene Institute at the University of Manchester have achieved a significant milestone in the field of quantum electronics with their latest study on spin injection in graphene. The paper, published recently in Communications Materials, outlines advancements in spintronics and quantum transport.

Spin electronics, or spintronics, represents a revolutionary alternative to traditional electronics by utilizing the spin of electrons rather than their charge to transfer and store information. This method promises energy-efficient and high-speed solutions that exceed the limitations of classical computation, for next generation classical and quantum computation.

The Manchester team, led by Dr. Ivan Vera-Marun, has fully encapsulated in , an insulating and atomically flat 2D material, to protect its high quality. By engineering the 2D material stack to expose only the edges of , and laying magnetic nanowire electrodes over the stack, they successfully form one-dimensional (1D) contacts.

A new study from the University of Eastern Finland (UEF) explores the behavior of photons, the elementary particles of light, as they encounter boundaries where material properties change rapidly over time. This research uncovers remarkable quantum optical phenomena that may enhance quantum technology and paves the road for an exciting nascent field: four-dimensional quantum optics.

Four-dimensional optics is a research area investigating light scattering from structures which change in time and space. It holds immense promise for advancing microwave and optical technologies by enabling functionalities such as frequency conversion, amplification, polarization engineering and asymmetric scattering. That is why it has captured the interest of many researchers across the globe.

Previous years have seen significant strides in this area. For instance, a 2024 study published in Nature Photonics and also involving UEF highlights how incorporating optical features like resonances can drastically influence the interaction of electromagnetic fields with time-varying two-dimensional structures, opening exotic possibilities to control light.