Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Landmark Black Hole Test Marks Decade of Gravitational-Wave Discoveries

The clearest black hole merger signal ever measured has allowed researchers to test the Kerr nature of black holes and validate Stephen Hawking’s black hole area theorem.

Gravitational-wave astronomy is moving at breakneck speed. Just over a decade ago, the direct detection of gravitational waves was considered an elusive goal—perpetually said to be “five-to-ten years away.” Then came the 2015 breakthrough: the first observed merger of two black holes, known as GW150914 [1]. Detections have since become routine, with a catalog of black hole mergers now numbering in the hundreds. There is even evidence for a gravitational-wave background at nanohertz frequencies, plausibly sourced by a population of supermassive black hole binaries throughout the Universe. Now the LIGO detectors have captured the clearest merger signal ever recorded, GW250114 [2]. From such a signal, the LIGO-Virgo-KAGRA (LVK) Collaboration was able to draw two spectacular conclusions. First, it confirmed that the nature of the merging objects is consistent with that of Kerr (spinning) black holes.

Probing the Higgs Mechanism with Particle Collisions and AI

A deep neural network has proven essential in confirming a key prediction of one of the standard model’s cornerstones.

The Higgs mechanism explains why the electromagnetic and weak interactions have such drastically different strengths—that is, how their symmetry became broken a picosecond after the big bang. The Higgs does not interact with photons, rendering them massless, whereas they do interact with the carriers of the weak interaction (the W+, W, and Z bosons), giving them masses of order 100 GeV. Their nonzero masses allow them to acquire a longitudinal polarization—that is, a spin orientation perpendicular to their direction of motion. Because of special relativity, photons and other massless bosons that travel at the speed of light can’t have longitudinal polarization, but the W and Z bosons and other massive particles can. If electroweak symmetry had been broken not by the Higgs mechanism but by a different interaction, there would be no Higgs boson to find.

Tests on superconducting materials for world’s largest fusion energy project show reliable measurement protocol

Durham University scientists have completed one of the largest quality verification programs ever carried out on superconducting materials, helping to ensure the success of the world’s biggest fusion energy experiment ITER.

Their findings, published in Superconductor Science and Technology, shed light not only on the quality of the wires themselves but also on how to best test them, providing crucial knowledge for scientists to make a reality.

Fusion (the process that powers the sun) has long been described as the holy grail of clean energy. It offers the promise of a virtually limitless power source with no carbon emissions and minimal radioactive waste.

Pinning down protons in water—a basic science success story

The movement of protons through electrically charged water is one of the most fundamental processes in chemistry. It is evident in everything from eyesight to energy storage to rocket fuel—and scientists have known about it for more than 200 years.

But no one has ever seen it happen. Or precisely measured it on a microscopic scale.

Now, the Mark Johnson lab at Yale has—for the first time—set benchmarks for how long it takes protons to move through six charged . The discovery, made possible with a highly customized mass spectrometer that has taken years to refine, could have far-reaching applications for researchers in years to come.

Mathematical ‘sum of zeros’ trick exposes topological magnetization in quantum materials

A new study addresses a foundational problem in the theory of driven quantum matter by extending the Středa formula to non-equilibrium regimes. It demonstrates that a superficially trivial “sum of zeros” encodes a universal, quantized magnetic response—one that is intrinsically topological and uniquely emergent under non-equilibrium driving conditions.

Imagine a strange material being rhythmically pushed—tapped again and again by invisible hands. These are periodically driven , or Floquet systems, where energy is no longer conserved in the usual sense. Instead, physicists speak of quasienergy—a looping spectrum with no clear start or end.

When scientists measure how such a system responds to a magnetic field, every single contribution seems to vanish—like adding an infinite list of zeros. And yet, the total stubbornly comes out finite, quantized, and very real.

Measuring the Unruh effect: Proposed approach could bridge gap between general relativity and quantum mechanics

Researchers at Hiroshima University have developed a realistic, highly sensitive method to detect the Unruh effect—a long-predicted phenomenon at the crossroads of relativity and quantum theory. Their novel approach opens new possibilities for exploring fundamental physics and for developing advanced technologies.

The work is published in Physical Review Letters on July 23, 2025.

The Fulling-Davies-Unruh effect, or simply the Unruh effect, is a striking theoretical prediction at the profound intersection of Albert Einstein’s Theory of Relativity and Quantum Theory.

Turbulence with a twist: New work shows fluid in a curved pipe can undergo discontinuous transition

Turbulence is everywhere, yet much about the nature of turbulence remains unknown. During the last decade, physicists have discovered how fluids in a pipe or similar geometry transition from a smooth, laminar state to a turbulent state as their speed increases.

Surprisingly, in the newly emerging consensus, the process could be understood using , not fluid mechanics, and was mathematically equivalent to the way in which water percolates down through a coffee filter.

In a new twist, UC San Diego researchers Guru K. Jayasingh and Nigel Goldenfeld have now predicted that if the pipe is sufficiently curved, the transition can become discontinuous, with the turbulent fraction undergoing a jump beyond a critical flow velocity. This jump is mathematically similar to the way in which water can suddenly and discontinuously turn into ice if cooled below the freezing temperature.

DNA cassette tapes could solve global data storage problems

Our increasingly digitized world has a data storage problem. Hard drives and other storage media are reaching their limits, and we are creating data faster than we can store it. Fortunately, we don’t have to look too far for a solution, because nature already has a powerful storage medium with DNA (deoxyribonucleic acid). It is this genetic material that Xingyu Jiang at the Southern University of Science and Technology in China and colleagues are using to create DNA storage cassettes.

Personalized brain stimulation shows benefit for depression

A more precise and personalized form of electric brain stimulation may be a more effective and faster treatment for people with moderate to major depression compared to other similar treatments, according to a UCLA Health study.

The study, published in JAMA Network Open, examined the effectiveness of a noninvasive brain stimulation treatment known as (HD-tDCS) in treating depression. Transcranial direct current stimulation uses electrodes placed on a patient’s scalp to deliver noninvasive, safe levels of electrical currents to targeted areas of the brain.

For depression, the treatment is used to target brain networks that regulate emotional processing and self-referential thoughts. TDCS has not been approved by the U.S. Food and Drug Administration as a treatment for depression, and into various forms of tDCS is ongoing.

Distinct psilocybin-induced oscillations observed in rat medial prefrontal cortex, with effects lasting days

Psychedelics, a class of psychoactive drugs that typically induce peculiar mental states and hallucinations, are still prohibited for recreational use in most countries worldwide. In recent years, some neuroscientists and medical researchers have been exploring the potential therapeutic effects of these drugs, focusing on the treatment of depression, anxiety and various substance use disorders.

Researchers at the University of Bristol, Compass Pathways plc and other institutes recently carried out a new study involving rats, exploring the effects of the psychedelic compound on the activity of neurons in the medial prefrontal cortex, a brain region that supports decision-making, attention and the regulation of emotions. Their paper, published in Molecular Psychiatry, outlines some of the associated with the intake of this compound, which had not yet been observed in human experiments.

“Psychedelic drugs like have profound effects on our brains and minds,” Matt Jones, Professor of Neuroscience at the University of Bristol and senior author of the paper, told Medical Xpress. “These effects are fascinating and—as a long history of psychedelic use and recent clinical trials attest—potentially beneficial. This study was driven by two interrelated questions. Firstly, how does a relatively simple, small molecule alter brain activity to completely change our mental model of the world? Secondly, can those effects be harnessed to help treat mental illness?”

/* */