Toggle light / dark theme

While most space ships in sci fi are mechanical and metallic, there are those that defy all of that and are actually living beings or composed of living organic material. Mind you, that these here I this video are bioships in a sense that they transport smaller beings inside of them and respond to the command of a pilot or hive mind just how ships are meant to do & they aren’t wild space creatures like space whales or void monsters. These here are the Bioships, the biggest in Scifi. lets get to them.

Credits:
https://www.artstation.com/artwork/XaL4Y
https://www.warhammer-community.com/
https://wh40k.lexicanum.com/
https://warhammer40k.fandom.com/wiki/

FAIR-USE COPYRIGHT DISCLAIMER Copyright Disclaimer under Section 107 of the Copyright Act 1976, allowance is made for “fair use” for purposes such as criticism, commenting, news reporting, teaching, scholarship, and research. Fair use is a use permitted by copyright statute that might otherwise be infringing. Non-profit, educational or personal use tips the balance in favour of fair use. Nutbug does not own the rights to these videos and pictures. They have, in accordance with fair use, been repurposed with the intent of educating and inspiring others. However, if any content owners would like their images removed, please contact us by email [email protected]

A clinical study of artificial red blood cells that can be stored for transfusions in times of emergency will begin in Japan by next March, according to Nara Medical University.

The university aims to put the artificial cells into practical use by around 2030, it said in early July, in what would likely be a world first.

The development of the blood cells, designed for use in remote areas and disasters, comes as a blood shortage is expected at medical facilities due to a declining number of donors amid the country’s shrinking population.

As artificial intelligence takes off, how do we efficiently integrate it into our lives and our work? Bridging the gap between promise and practice, Jann Spiess, an associate professor of operations, information, and technology at Stanford Graduate School of Business, is exploring how algorithms can be designed to most effectively support—rather than replace—human decision-makers.

This research, published on the arXiv preprint server, is particularly pertinent as prediction machines are integrated into real-world applications. Mounting suggests that high-stakes decisions made with AI assistance are often no better than those made without it.

From credit reports, where an overreliance on AI may lead to misinterpretation of risk scores, to , where models may depend on certain words to flag toxicity, leading to misclassifications—successful implementation lags behind the technology’s remarkable capabilities.

A new study published in Nature reveals how olfactory sensory neurons (OSNs) achieve extraordinary precision in selecting which genes to express.

The mechanism is surprising in that it involves solid-like molecular condensates that last for days, helping to solve a long-standing puzzle in genome organization.

The research, led by Prof. Stavros Lomvardas from Columbia University, addresses one of biology’s most intriguing questions: How do in the nose manage to express only one (OR) gene out of approximately 1,000 available options?

Laser interstitial thermal therapy (LITT) has emerged as a minimally invasive treatment for primary CNS tumors. While LITT offers advantages over traditional approaches, perilesional intracranial heatsinks can lead to asymmetrical ablation, impacting patient outcomes. Understanding heatsink effects is crucial for optimizing LITT efficacy.

The authors retrospectively analyzed primary CNS tumors treated with LITT at a single tertiary care center. Ablation outcomes were quantified using the Heatsink Effect Index (HEI), measured on a scale of 0–1 (0 = total symmetry, 1 = complete asymmetry), and extent of ablation (EOA). The heatsink types evaluated were sulci, meninges, vasculature, and CSF spaces, inclusive of ventricles, resection cavities, and CSF cisterns. Statistical analyses were performed to assess the relationship between heatsink proximity and type and ablation outcomes.

A total of 99 patients satisfied all selection criteria. The cohort was 53% female, with a mean age of 61 years. Glioblastoma was the most predominant tumor type (78%), followed by low-grade glioma (15%) and meningioma (4%). Heatsink proximity significantly correlated with ablation asymmetry (HEI) (p < 0.001), particularly at the midpoint of the catheter trajectory. The correlation between closest heatsink distance and HEI varied across the different heatsink types, with distance to vasculature and CSF spaces correlating the strongest with ablation asymmetry. When assessing the relationship between EOA and medial HEI during suboptimal ablations (EOA < 100%), a negative correlation was demonstrated, showing improved EOA as HEI was reduced. Optimal cutoff catheter-heatsink distances for predicting ablation asymmetry ranged from 6.6 to 13.0 mm, emphasizing the impact of heatsink proximity on LITT efficacy.

Re-examination of the presumed Cambrian fossil fish Anatolepis reveals previous misidentification of aglaspidid sensory structures as dentine,&nbsp;a vertebrate sensory&nbsp;tissue, showing it to be an arthropod, and shifting the origin of vertebrate hard tissues to the Middle Ordovician.