Toggle light / dark theme

A new perovskite solar cell (PSC) demonstrates remarkable resilience even in high heat conditions, thanks to an innovative protective film. The research team suggests that these findings represent a significant step toward commercialization by addressing thermal stability issues.

A research team, led by Professor Dong Suk Kim at the UNIST Graduate School of Carbon Neutrality, in collaboration with Professor Tae Kyung Lee from Gyeongsang National University (GNU), has successfully engineered a heat-resistant PSC capable of withstanding high-temperature encapsulation processes.

This innovative solar cell demonstrated a remarkable initial efficiency of 25.56% and maintained over 85% of its initial efficiency after operating under conditions of 85°C and 85% for up to 1,000 hours. The findings are published in the journal Energy & Environmental Science.

The four billion tons of marine organisms that global fisheries extracted from the ocean between 1960 and 2018 resulted in the depletion of over 560 million tons of essential nutrients vital to ecosystem health, new research has found.

In a recent paper published in the journal Communications Earth & Environment, researchers at Utah State University and the Sea Around Us initiative at the University of British Columbia estimate that industrial fisheries have removed over 430 million tons of carbon, 110 million tons of nitrogen, and 23 million tons of phosphorus from countries’ Exclusive Economic Zones and 18 high seas regions since 1960.

“Fish and other marine organisms contain specific nutrients in their bodies. By massively targeting 330 species based on , sociopolitical factors and natural availability, industrial fisheries have altered the natural nutrient balance of marine ecosystems,” said Adrian Gonzalez Ortiz, who led the research while pursuing his master’s degree at Utah State University.

After a Chicago-sized iceberg broke off from Antarctica, a research vessel changed plans and went to explore an underwater world never seen before by humans.

Researchers and crewmembers aboard the Schmidt Ocean Institute’s Falkor (too), “seized upon the moment” that was presented to them, and in doing so produced the first oceanographical, biological, and geological study of the area.

Located in the Bellingshausen Sea, the King George VI ice shelf, one of the massive, mostly seaborne glaciers that sit attached to the continent of Antarctica, lost a chunk of ice the size of the greater Chicago area, or around 209 square miles.

Chengdu University of Technology-led research has established a high-resolution astrochronological framework spanning approximately 57.6 million years of the early Ediacaran Period. This calibrated timeline provides precise constraints on major climatic events and the appearance of early complex life, offering critical context for understanding environmental change and biological innovation during Earth’s early history.

Understanding on Earth has been frequently stalled by an imprecise geological clock. Scientists have relied on broad stratigraphic patterns to trace the early Ediacaran Period (635 to 538.8 million years ago), a time marked by massive climate upheavals and the first signs of complex life.

Without consistent radiometric dating, researchers have struggled to align environmental disruptions such as shifts in carbon chemistry or marine oxygen levels with biological change. It’s a bit like having a few puzzle pieces and a stack of puzzles they might have come from. Fragmented timelines have left unanswered questions about what may have triggered evolutionary steps and when they occurred.

A new study published in Psychiatry Research: Neuroimaging has found that adolescents with major depressive disorder display unusual eye movement patterns, which are linked to cognitive problems such as memory and attention deficits. The researchers used eye-tracking technology to compare the visual behavior of adolescents with and without depression during different visual tasks. They found that certain eye movement characteristics were significantly different in adolescents with depression and were associated with poorer performance on cognitive tests.

Major depressive disorder often begins during adolescence, a period of intense emotional, social, and cognitive development. Depression in teenagers is not only becoming more common but also tends to recur and interfere with many areas of life, including school, family relationships, and social functioning. In many cases, even when mood symptoms improve with treatment, cognitive difficulties—like trouble with memory, attention, and understanding social cues—can persist. These problems can make it hard for adolescents to return to normal daily activities and may contribute to poor treatment outcomes and higher relapse rates.

In recent years, researchers have become interested in using eye-tracking technology as a non-invasive way to study how the brain processes information. Eye movements, including how often people look at certain parts of an image or how well they can follow a moving object, are known to reflect underlying cognitive processes. For example, smooth and coordinated eye movements require good attention control, while frequent or erratic eye movements might indicate difficulty with focus or information processing. Since brain areas involved in eye control also play a role in cognitive functioning, the researchers wanted to explore whether eye movement patterns could serve as indicators of cognitive problems in depressed adolescents.

The study provides critical new insights into the African Humid Period, a time between 14,500 and 5,000 years ago when the Sahara desert was a green savanna, rich in water bodies that facilitated human habitation and the spread of pastoralism. Later aridification turned this region into the world’s largest desert. Due to the extreme aridity of the region today, DNA preservation is poor, making this pioneering ancient DNA study all the more significant.

Genomic analyses reveal that the ancestry of the Takarkori rock shelter individuals primarily derives from a North African lineage that diverged from sub-Saharan African populations at about the same time as the modern human lineages that spread outside of Africa around 50,000 years ago. The newly described lineage remained isolated, revealing deep genetic continuity in North Africa during the late Ice Age. While this lineage no longer exists in unadmixed form, this ancestry is still a central genetic component of present-day North African people, highlighting their unique heritage.


An international team led by researchers from the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, has sequenced the first ancient genomes from the so-called Green Sahara, a period when the largest desert in the world temporarily turned into a humid savanna-like environment. By analyzing the DNA of two 7,000-year-old naturally mummified individuals excavated in the Takarkori rock shelter in southwestern Libya by the Archaeological Mission in the Sahara, Sapienza University of Rome, the team showed that they belonged to a long-isolated and now extinct North African human lineage. This group of cattle pastoralists has only a minor genetic component of non-African ancestry, suggesting that animal husbandry may have spread into the Green Sahara through cultural exchange rather than large-scale migrations.