Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Solar-boosted system turns wasted data center heat into clean power

When you stream a movie, back up a photo or ask ChatGPT a question, somewhere a data center is working hard—and getting hot. Cooling those facilities already consumes a huge share of their electricity, and nearly half of that energy leaves as low-temperature waste heat that’s simply vented into the air.

SeeMe detects hidden signs of consciousness in brain injury patients

SeeMe, a computer vision tool tested by Stony Brook University researchers, was able to detect low-amplitude, voluntary facial movements in comatose acute brain injury patients days before clinicians could identify overt responses.

Close friends know that I have a standing “do not unplug” order should I ever fall into an unresponsive state. If there is even a flicker of a chance that the mind is still working, I will be fine. Keep me plugged in and hang a “do not disturb” sign on whatever apparatus is keeping me alive.

It’s not like you can know in advance what it’s like, but it seems relaxed enough, with plenty of time to think, and I haven’t really gained anything useful from conversations with other humans in years (aside from my editors who always provide valuable information). If it is at all like sleeping, there might be dreams, so, perchance, that’s what I’d be doing in a comatose state. But for the friends by my bedside, how to be certain that the mind is still flickering?

Brains listen best in the ‘Goldilocks echo zone,’ says study

Macquarie University hearing researchers have discovered how our brains learn to listen, and how this can help us understand speech in noisy, echo-filled spaces.

The research, published in eLife, looks at how we can unconsciously adjust to different kinds of .

Building on earlier work that showed animals’ brains quickly adapt to changes in sound levels, the new study is the first to show how humans adapt to echoey environments to improve their speech understanding.

Polaritons enable tunable and efficient molecular charge transfer across broader spectrum of light

Polaritons are quasiparticles emerging from strong interactions between light particles (i.e., photons) and matter excitations (e.g., excitons). Over the past few years, researchers have found that these quasiparticles can alter fundamental chemical and physical processes.

Algorithms that address malicious noise could result in more accurate, dependable quantum computing

Quantum computers promise enormous computational power, but the nature of quantum states makes computation and data inherently “noisy.” Rice University computer scientists have developed algorithms that account for noise that is not just random but malicious. Their work could help make quantum computers more accurate and dependable.

Roll-to-roll method streamlines DNA sequencing with faster, more efficient fluidics

Researchers at Beijing Genomics and IMDEA Nanociencia institutes have introduced a novel method that could significantly accelerate efficiency and reduce the cost of handling fluidics in DNA sequencing.

Traditional DNA sequencing relies on flow cells, where liquid reagents are repeatedly pumped in and out for each of the sequencing reactions. For large-scale sequencing, this process involves immersing into reagents—a method that works well at industrial scale but is impractical for smaller labs or , where sample sizes are limited and drying effects become a problem.

The new approach turns that process on its head. Instead of pumping fluids through a chamber, the researchers use a roll-to-roll technique that gently shears the liquid across the surface. This dramatically improves efficiency, allowing reagents to be replaced more quickly and uses up to 85 times less material. As a result, DNA sequencing that once took days can now be completed in under 12 hours, with significantly lower costs.

Particle detector proves precision as it prepares to probe properties of quark-gluon plasma

A new and powerful particle detector just passed a critical test in its goal to decipher the ingredients of the early universe. The sPHENIX detector is the newest experiment at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC) and is designed to precisely measure products of high-speed particle collisions.

Crystalline material conducts heat even worse than glass and water—and that’s promising

A research team from Aarhus University, Denmark, has measured and explained the exceptionally low thermal conductivity of the crystalline material AgGaGe3Se8. Despite its ordered structure, the material behaves like a glass in terms of heat transport—making it one of the least heat-conductive crystalline solids known to date.

At room temperature, AgGaGe3Se8 exhibits a of just 0.2 watts per meter-Kelvin—which is three times lower than water and five times lower than typical silica glass. The material is composed of silver (Ag), gallium (Ga), germanium (Ge), and selenium (Se), and has previously been studied for its .

Now, for the first time, researchers from iMAT—the Aarhus University Center for Integrated Materials Research—have measured its thermal transport properties and identified the structural origin of its unusually .

Fabrication technique opens door to new materials for quantum hardware

Researchers have demonstrated a new fabrication approach that enables the exploration of a broader range of superconducting materials for quantum hardware.

The study, published in Applied Physics Letters, addresses a long-standing challenge: many promising superconductors, such as transition metal nitrides, carbides, and silicides, are difficult to pattern into functional devices using conventional chemistry-based methods.

By showing that physical patterning provides a viable alternative, the study paves the way to evaluate and harness these materials for high-performing quantum technologies.

Soft materials hold onto ‘memories’ of their past for longer than previously thought

If your hand lotion is a bit runnier than usual coming out of the bottle, it might have something to do with the goop’s “mechanical memory.”

Soft gels and lotions are made by mixing ingredients until they form a stable and uniform substance. But even after a gel has set, it can hold onto “memories,” or residual stress, from the mixing process. Over time, the material can give in to these embedded stresses and slide back into its former, premixed state. Mechanical memory is, in part, why hand lotion separates and gets runny over time.

Now, an MIT engineer has devised a simple way to measure the degree of residual stress in soft materials after they have been mixed, and found that common products like hair gel and shaving cream have longer mechanical memories, holding onto residual stresses for longer periods of time than manufacturers might have assumed.

/* */