Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

How the auditory cortex syncs with behavior to help the brain become a better listener

When we are engaged in a task, our brain’s auditory system changes how it works. One of the main auditory centers of the brain, the auditory cortex, is filled with neural activity that is not sound-driven—rather, this activity times the task, each neuron ticking at a different moment during task performance.

Researchers at Hebrew University have discovered how this happens. The study published in Science Advances, led by Prof. Israel Nelken from the Edmond and Lily Safra Center for Brain Sciences (ELSC) and the Institute of Life Sciences, is based on the Ph.D. research of Ana Polterovich, with contributions from Alex Kazakov, Maciej M. Jankowski, and Johannes Niediek.

They found that when we are engaged in the task, neurons in the brain’s show large bursts of activity that aren’t caused directly by sounds. Instead, these “” are tied to specific moments in a task, suggesting that the auditory cortex is deeply in sync with behavior.

Taking the shock out of predicting shock wave behavior with precise computational modeling

Shock waves should not be shocking—engineers across scientific fields need to be able to precisely predict how the instant and strong pressure changes initiate and dissipate to prevent damage. Now, thanks to a team from Yokohama National University, those predictions are even better understood.

In work published on Aug. 19 in the Physics of Fluids, the researchers detailed how computational models used to simulate wave behavior represent the very weak in a way that is distinctly different from both theoretical predictions and physical measurements.

Shock waves comprise the pressure that pushes out from an explosion or from an object moving faster than sound, like a supersonic jet. Weak shockwaves refer to the same changes in pressure, density and velocity, but they are much smaller than the larger waves and move closer to the speed of sound. However, current computational modeling approaches have difficulty accurately representing these very weak shock waves, according to co-author Keiichi Kitamura, professor, Faculty of Engineering, Yokohama National University.

Developing drugs—with tens of thousands of minuscule droplets on a small glass plate

A glass plate, a delicate tube and an oil bath are all that is required: thanks to a new method, researchers at ETH Zurich can produce tens of thousands of tiny droplets within minutes. This enables them to test enzymes and active ingredients faster, more precisely and in a more resource-efficient manner than previously.

What happens when an enzyme encounters a potential active ingredient that is supposed to inhibit or activate the enzyme? This is precisely what drug development is all about. Analyzing the interaction of an enzyme with an active ingredient molecule, however, is extremely complex.

The group led by Petra Dittrich, Professor of Bioanalytics at ETH Zurich, has developed a method that radically simplifies such tests: their method allows up to 100,000 minuscule droplets containing enzymes and substrates to be produced on a glass plate—in a mere 40 minutes and without involving a pipette.

Deep sleep supports memory via brain fluid and neural rhythms, research finds

Researchers led by Masako Tamaki at the RIKEN Center for Brain Science in Japan report a link between deep sleep and cerebrospinal fluid, the clear liquid that surrounds and supports the brain and spinal cord. Published in Proceedings of the National Academy of Sciences, the study demonstrates how changes in cerebrospinal fluid signals during sleep—as measured by MRI—are time-locked to slow brain waves and other neural events.

These findings offer a clue as to why stable sleep is important for normal brain function, particularly within the brain network that controls learning and memory.

Why do we sleep? Scientists think that sleep is important for consolidating memories and removing waste from the brain that accumulates as a result of brain activity while we are awake.

Quantum networks bring new precision to dark matter searches

Detecting dark matter—the mysterious substance that holds galaxies together—is one of the greatest unsolved problems in physics. Although it cannot be seen or touched directly, scientists believe dark matter leaves weak signals that could be captured by highly sensitive quantum devices.

In a new study published in Physical Review D, researchers at Tohoku University propose a way to boost the sensitivity of quantum sensors by connecting them in carefully designed network structures. These quantum sensors use the rules of quantum physics to detect extremely small signals, making them far more sensitive than ordinary sensors. Using these, accurately detecting the faint clues left behind from dark matter could finally become possible.

The study focuses on , which are tiny electric circuits cooled to very low temperatures. These qubits are normally used as building blocks of quantum computers, but here they act as powerful quantum sensors. Just as a team working together can achieve more than a single person, linking many of these superconducting qubits in an optimized network allows them to detect weak dark matter signals much more effectively than any single sensor could on its own.

“Truly Extraordinary” — Supermassive Black Hole Found in the Last Place Scientists Expected

Dr. Sfaradi, who led the research, is a former graduate student of Prof. Assaf Horesh. “This is one of the fascinating discoveries I’ve been part of,” said Prof. Horesh. “The fact that it was led by my former student, Itai, makes it even more meaningful. It’s another scientific achievement that places Israel at the forefront of international astrophysics.”

A black hole far from home

Tidal disruption events occur when a star ventures too close to a massive black hole and is torn apart by its immense gravity.

/* */