Toggle light / dark theme

If you have ever had your blood drawn, whether to check your cholesterol, kidney function, hormone levels, blood sugar, or as part of a general checkup, you might have wondered why there is not an easier, less painful way.

Now there might be. A team of researchers from Caltech’s Cherng Department of Medical Engineering has unveiled a new wearable sensor that can detect in even minute levels of many common nutrients and biological compounds that can serve as indicators of human health.

The was developed in the lab of Wei Gao, assistant professor of , Heritage Medical Research Institute investigator, and Ronald and JoAnne Willens Scholar. For years, Gao’s research has focused on with medical applications, and this latest work represents the most precise and sensitive iteration yet.

Tiny plastic particles may accumulate at higher levels in the human brain than in the kidney and liver, with greater concentrations detected in postmortem samples from 2024 than in those from 2016, suggests a paper published in Nature Medicine. Although the potential implications for human health remain unclear, these findings may highlight a consequence of rising global concentrations of environmental plastics.

The amount of environmental nano-and microparticles, which range in size from as small as 1 nanometer (one billionth of a meter) up to 500 micrometers (one millionth of a meter) in diameter, has increased exponentially over the past 50 years. However, whether they are harmful or toxic to humans is unclear. Most previous studies used visual microscopic spectroscopy methods to identify particulates in , but this is often limited to particulates larger than 5 micrometers.

Researcher Matthew Campen and colleagues used novel methods to analyze the distribution of micro-and nanoparticles in samples of , kidney, and tissues from human bodies that underwent autopsy in 2016 and 2024. A total of 52 brain specimens (28 in 2016 and 24 in 2024) were analyzed.

Attention-deficit hyperactivity disorder (ADHD) is a well-known neurodevelopmental disorder that affects the brain’s ability to regulate attention and control impulses. It poses many challenges to those affected, typically making it difficult for them to sustain focus, follow through with instructions, and maintain a calm and restful state.

As one of the most common neurodevelopmental disorders, ADHD impacts individuals throughout their lives, creating a breadth of social, emotional, academic, and workplace challenges.

Despite its high prevalence and decades of research, currently available drugs for ADHD are not able to completely resolve the core symptoms of the disorder in most cases.

Children with attention deficit hyperactivity disorder (ADHD) do not have a behavioral disorder, nor are they lazy, or lacking in manners and boundaries. Their brains mature in a different way, with different patterns of neurological activity and a number of neurochemical differences. For this reason, ADHD is considered to be a neurodevelopmental disorder.

These neurological imbalances manifest as attention difficulties, disorganization, or hyperactivity and impulsivity. While these are most noticeable in childhood, where prevalence is estimated at 5%, ADHD can persist into adulthood, where prevalence is 2.5% of the population. ADHD can therefore have social, academic and occupational impacts throughout a person’s life.

Although there are risk factors (such as mothers smoking during pregnancy or ), these have not been shown to directly cause ADHD. Genetic factors play a more significant role, as 74% of cases are hereditary.

I take Adderall.


Attention Deficit/Hyperactivity Disorder (ADHD) is one of the most prevalent neurodevelopmental disorders and can persist into adulthood in the majority of cases. ADHD is associated with deficits in cognitive functions, in particular executive functions such as motor and interference inhibition, sustained attention, working memory, timing, psychomotor speed, reaction time variability and switching.

This is the first meta-analysis paper of chronic medication effects on cognition in ADHD, looking at attention, inhibition, reaction time and working memory. All of these aspects can affect academic performance in school, and occupational performance in adults.

The research is published in the journal Neuroscience & Biobehavioral Reviews.

Tissue engineering utilizes 3D printing and bioink to grow human cells on scaffolds, creating replacements for damaged tissues like skin, cartilage, and even organs. A team of researchers led by Professor Insup Noh from Seoul National University of Science and Technology, Republic of Korea, has developed a bioink using nanocellulose derived from Kombucha SCOBY (Symbiotic Culture of Bacteria and Yeast) as the scaffold material.

The biomaterial offers a sustainable alternative to conventional options, and it can be loaded onto a hand-held “Biowork” biopen, also developed by the same team. The digital biopen allows the precise application of bioink to damaged defected areas, such as irregular cartilage and large skin wounds, paving the way for more personalized and effective in vivo tissue repair, eliminating the need for in vitro processes.

This paper was published in the International Journal of Biological Macromolecules on 1 December 2024.

The development of biomaterials for artificial organs and tissues is an active area of research due to increases in accidental injuries and chronic diseases, along with the entry into a super-aged society. 3D bioprinting technology, which uses cells and biomaterials to create three-dimensional artificial tissue structures, has recently gained popularity. However, commonly used hydrogel-based bioinks can cause cytotoxicity due to the chemical crosslinking agent and ultraviolet light that connect the molecular structure of photocuring 3D-printed bioink.

Dr. Song Soo-chang’s research team at the Center for Biomaterials, Korea Institute of Science and Technology (KIST), revealed the first development of poly(organophosphazene) hydrogel-based temperature-sensitive that stably maintained its physical structure by temperature control only without photocuring, induced tissue regeneration, and then biodegraded in the body after a certain period of time.

Current hydrogel-based bioinks must go through a photocuring process to enhance the mechanical properties of the 3D scaffold after printing, with a high risk of adverse effects in the human body. In addition, there has been a possibility of side effects when transplanting externally cultured cells within bioink to increase the tissue regeneration effect.

Biological systems come in all shapes, sizes and structures. Some of these structures, such as those found in DNA, RNA and proteins, are formed through complex molecular interactions that are not easily duplicated by inorganic materials.

A research team led by Richard Robinson, associate professor of materials science and engineering, discovered a way to bind and stack nanoscale clusters of copper molecules that can self-assemble and mimic these complex biosystem structures at different length scales. The clusters provide a platform for developing new catalytic properties that extend beyond what traditional materials can offer.

The nanocluster core connects to two copper caps fitted with special binding molecules, known as ligands, that are angled like propeller blades.

RUDN chemists have synthesized metal complexes on the basis of the organoelemental substance silsesquioxane that consists of an organic and an inorganic part. Such hybrid systems may be used as efficient catalysts, for example, to obtain alcohols from alkanes. The work was published in the Inorganic Chemistry journal.

Physical and chemical parameters of any material or substance are limited and cannot be infinitely improved. So scientists work on hybrid materials that combine different components and therefore demonstrate new properties. In modern chemistry, special attention is paid to compounds that consist of metal centers and organic “bridges” that keep them together. Such objects have a number of valuable properties and may be used for industrial purposes: catalysis, storage of gases, accurate separation of mixed . They can also be used to create chemical sensors and agents to deliver drugs to their targets in the body.

Hybrid organoelemental substances such as silsesquioxanes consist of an inorganic main chain Si-O-Si and an organic framework of Si atoms. Compounds like this can be formed when metal atoms are added to carcass structures with promising catalytic and magnetic properties. RUDN chemists suggested a new approach to such compounds based on the use of additional complex-forming substances (ligands).

Every time a shuttle docks with the International Space Station (ISS), a delicate dance unfolds between the shuttle’s docking system and its counterpart on the station. Thanks to international standards, these mechanisms are universally compatible, ensuring astronauts and cargo can safely and seamlessly enter the station.

A similar challenge arises at the microscopic level when (LNPs)—the revolutionary drug vehicles behind the COVID-19 vaccines—attempt to deliver mRNA to cells. Optimizing the design and delivery of LNPs can greatly enhance their ability to deliver mRNA successfully, empowering cells with the disease-fighting instructions needed to transform medicine.