Menu

Blog

Page 2

Jan 18, 2025

The 4th Dimension in Relativity isn’t Time — it’s Space

Posted by in categories: mathematics, physics, space

Our reality is a 3 + 1 pseudo-Riemannian spacetime manifold whose intrinsic curvature manifests itself as gravity, right? Well no, because descriptions are not reality, and math is not physics. Indeed, when taken at its most literal, face-value, what the \.

Jan 18, 2025

How Practical are Carriers in Space Warfare?

Posted by in categories: military, space

This episode focuses on the basic concepts and misconceptions of wars fought in space and examines the notions of weapons, defenses, stealth in space, and the distance involved.

Jan 18, 2025

Neural populations are dynamic but constrained

Posted by in category: neuroscience

Our brains evolved to help us rapidly learn new things. But anyone who has put in hours of practice to perfect their tennis serve, only to reach a plateau, can attest that our brains aren’t infinitely flexible. New work shows that patterns of neural activity over time — the temporal dynamics of neural populations — cannot change rapidly, suggesting that neural activity dynamics may both reflect and constrain how the brain performs computations.

Jan 18, 2025

Quantum Computing Could Achieve Singularity In 2025—A ChatGPT Moment

Posted by in categories: quantum physics, robotics/AI, singularity

Quantum computing is drawing more attention now than generative AI did before ChatGPT’s release. This sparks big questions about what QC could achieve in 2025.

Jan 18, 2025

Tissue Engineering: Current Strategies and Future Directions

Posted by in categories: bioengineering, biotech/medical, evolution, genetics, life extension

Patients suffering from diseased and injured organs are often treated with transplanted organs, and this treatment has been in use for over 50 years. In 1955, the kidney became the first entire organ to be replaced in a human, when Murray transplanted this organ between identical twins. Several years later, Murray performed an allogeneic kidney transplant from a non-genetically identical patient into another. This transplant, which overcame the immunologic barrier, marked a new era in medicine and opened the door for use of transplantation as a means of therapy for different organ systems.

As modern medicine increases the human lifespan, the aging population grows, and the need for donor organs grows with it, because aging organs are generally more prone to failure. However, there is now a critical shortage of donor organs, and many patients in need of organs will die while waiting for transplants. In addition, even if an organ becomes available, rejection of organs is still a major problem in transplant patients despite improvements in the methods used for immunosuppression following the transplant procedure. Even if rejection does not occur, the need for lifelong use of immunosuppressive medications leads to a number of complications in these patients.

These problems have led physicians and scientists to look to new fields for alternatives to organ transplantation. In the 1960s, a natural evolution occurred in which researchers began to combine new devices and materials sciences with cell biology, and a new field that is now termed tissue engineering was born. As more scientists from different fields came together with the common goal of tissue replacement, the field of tissue engineering became more formally established. Tissue engineering is now defined as an interdisciplinary field which applies the principles of engineering and life sciences towards the development of biological substitutes that aim to maintain, restore or improve tissue function.

Jan 18, 2025

Restoring nervous system structure and function using tissue engineered living scaffolds

Posted by in categories: bioengineering, biotech/medical, neuroscience

Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways – the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals – is a common feature of many neurological disorders and injury. However, functional axonal regeneration rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function.

Jan 18, 2025

Progress in Neuroengineering for brain repair: New challenges and open issues

Posted by in categories: biotech/medical, engineering, life extension, neuroscience

In recent years, biomedical devices have proven to be able to target also different neurological disorders. Given the rapid ageing of the population and the increase of invalidating diseases affecting the central nervous system, there is a growing demand for biomedical devices of immediate clinical use. However, to reach useful therapeutic results, these tools need a multidisciplinary approach and a continuous dialogue between neuroscience and engineering, a field that is named neuroengineering. This is because it is fundamental to understand how to read and perturb the neural code in order to produce a significant clinical outcome.

Jan 18, 2025

Scientists develop brain organoids with complex neural activity

Posted by in categories: biotech/medical, life extension, neuroscience

Researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have developed brain organoids — 3D, brain-like structures grown from human stem cells — that show organized waves of activity similar to those found in living human brains.

Then, while studying organoids grown from stem cells derived from patients with the neurological disorder Rett syndrome, the scientists were able to observe patterns of electrical activity resembling seizures, a hallmark of the condition.

The study, published today in the journal Nature Neuroscience, broadens the list of brain conditions that can be studied in organoids and further illustrates the value of these human cell–based models in investigating the underlying causes of diseases and testing potential therapies.

Jan 18, 2025

Bioengineering & Nanotechnology

Posted by in categories: bioengineering, biotech/medical, nanotechnology

Bioengineers apply engineering and design principles to develop innovative solutions for biological and medical problems. Our researchers are creating tools and technologies to eliminate bottlenecks and reduce the time it takes for discoveries in stem cell research to reach the clinic as life-saving therapies. This includes everything from creating biodegradable scaffolds that can help stem cells Cells that have the ability to differentiate into multiple types of cells and make an unlimited number of copies of themselves. stem cells Cells that have the ability to differentiate into multiple types of cells and make an unlimited number of copies of themselves. regenerate damaged tissue to engineering materials that can make the immune-boosting effects of vaccines last longer.

Nanotechnology is the field of science focused on creating and manipulating structures and materials at the nanometer scale (one billionth of a meter). The application of nanotechnology in medicine recreates the natural scale of biological phenomena, enabling more precise and less invasive approaches for preventing, diagnosing and treating disease. Together with scientists from the California NanoSystems Institute at UCLA, our researchers are creating nanomaterials that enable targeted drug and gene delivery, more efficient production of cells for use as therapies and better models of human disease. Because nanotechnology-based methods enhance efficiency, require less material and use up less space, they can offer low cost, high-accuracy solutions for the study, diagnosis and treatment of disease.

By leveraging the combined strengths of nanotechnology and bioengineering, our researchers are accelerating the development of more effective and affordable stem cell-based therapies for a host of intractable medical conditions.

Jan 18, 2025

Biomaterial developed at UCLA helps regrow brain tissue after stroke in mice

Posted by in categories: biotech/medical, chemistry, engineering, life extension, neuroscience

A new stroke-healing gel created by UCLA researchers helped regrow neurons and blood vessels in mice whose brains had been damaged by strokes. The finding is reported May 21 in Nature Materials.

“We tested this in laboratory mice to determine if it would repair the brain and lead to recovery in a model of stroke,” said Dr. S. Thomas Carmichael, professor of neurology at the David Geffen School of Medicine at UCLA and co-director of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. “The study indicated that new brain tissue can be regenerated in what was previously just an inactive brain scar after stroke.”

The results suggest that such an approach could some day be used to treat people who have had a stroke, said Tatiana Segura, a former professor of chemical and biomolecular engineering at UCLA who collaborated on the research. Segura is now a professor at Duke University.

Page 2 of 12,37912345678Last