Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Researchers Spot Surge in Erlang/OTP SSH RCE Exploits, 70% Target OT Firewalls

Malicious actors have been observed exploiting a now-patched critical security flaw impacting Erlang/Open Telecom Platform (OTP) SSH as early as beginning of May 2025, with about 70% of detections originating from firewalls protecting operational technology (OT) networks.

The vulnerability in question is CVE-2025–32433 (CVSS score: 10.0), a missing authentication issue that could be abused by an attacker with network access to an Erlang/OTP SSH server to execute arbitrary code. It was patched in April 2025 with versions OTP-27.3.3, OTP-26.2.5.11, and OTP-25.3.2.20.

Then in June 2025, the U.S. Cybersecurity and Infrastructure Security Agency (CISA) added the flaw to its Known Exploited Vulnerabilities (KEV) catalog, based on evidence of active exploitation.

Quantum dot technique improves multi-photon state generation

A photonics research group co-led by Gregor Weihs of the University of Innsbruck has developed a new technique for generating multi-photon states from quantum dots that overcomes the limitations of conventional approaches. This has immediate applications in secure quantum key distribution protocols, where it can enable simultaneous secure communication with different parties.

Quantum dots—semiconductor nanostructures that can emit on demand—are considered among the most promising sources for photonic quantum computing. However, every quantum dot is slightly different and may emit a slightly different color. This means that to produce multi-photon states, we cannot use multiple quantum dots.

Usually, researchers use a single quantum dot and multiplex the emission into different spatial and temporal modes, using a fast electro-optic modulator. The technological challenge is that faster electro-optic modulators are expensive and often require very customized engineering. To add to that, they may not be very efficient, which introduces unwanted losses into the system.

US finds missing particle that makes quantum computing fully possible

Researchers at the University of Southern California (USC) in the US turned to an often overlooked particle for storing and processing quantum information to overcome the fragility of quantum computers and make them more universal in the near future.

Positioning one such particle in a quantum computer can help overcome errors in quantum computing, a university press release said.

The age of quantum computing promises computations at speeds that will make even the fastest supercomputers of today appear like snails. These computers leverage quantum properties of materials to store information in quantum bits or ‘qubits’

Iterative SCRaMbLE for engineering synthetic genome modules and chromosomes

SCRaMbLE can optimise traits via gene rearrangement but is limited by screening. Here the authors use FACS and long-read sequencing with iterative SCRaMbLE to map genotype diversity and gene arrangements, identifying solutions for improving genome design.

/* */