Toggle light / dark theme

For the first time, a team of Princeton physicists have been able to link together individual molecules into special states that are quantum mechanically “entangled.” In these bizarre states, the molecules remain correlated with each other—and can interact simultaneously—even if they are miles apart, or indeed, even if they occupy opposite ends of the universe. This research was recently published in the journal Science.

“This is a breakthrough in the world of because of the fundamental importance of quantum entanglement,” said Lawrence Cheuk, assistant professor of physics at Princeton University and the senior author of the paper. “But it is also a breakthrough for practical applications because entangled molecules can be the for many future applications.”

These include, for example, quantum computers that can solve certain problems much faster than conventional computers, that can model complex materials whose behaviors are difficult to model, and that can measure faster than their traditional counterparts.

Researchers at universities in New York and Ningbo, China, say they have created tiny robots built from DNA that can reproduce themselves.

Such nanorobots could one day launch search-and-destroy missions against within a human’s bloodstream without the need for surgery or collect toxic waste from the ocean.

The tiny mechanism is so small that 1,000 of them could fit into the width of a sheet of paper.

A proposed model unites quantum theory with classical gravity by assuming that states evolve in a probabilistic way, like a game of chance.

Physicists’ best theory of matter is quantum mechanics, which describes the discrete (quantized) behavior of microscopic particles via wave equations. Their best theory of gravity is general relativity, which describes the continuous (classical) motion of massive bodies via space-time curvature. These two highly successful theories appear fundamentally at odds over the nature of space-time: quantum wave equations are defined on a fixed space-time, but general relativity says that space-time is dynamic—curving in response to the distribution of matter. Most attempts to solve this tension have focused on quantizing gravity, with the two leading proposals being string theory and loop quantum gravity. But new theoretical work by Jonathan Oppenheim at University College London proposes an alternative: leave gravity as a classical theory and couple it to quantum theory through a probabilistic mechanism [1].

I like the chapter “would you want to be”.


Explore your DNA with ADNTRO! Use the code TODAY to get a 10% discount on the DNA kit: https://bit.ly/3GbE3sg or use the code TODAYRAW to get a 10% discount on your full DNA report: https://bit.ly/3sDuZJM

Ah, immortality, previously only for the gods and individuals with a fetish for chopping each other’s heads off. In more modern times, science is coming closer and closer to both identifying the tapestry of things that cause humans to grow old, and slowly but surely taking the first steps into finding ways to delay and even reverse this process for fun and profit. So, just what causes individuals of the human persuasion to grow old and die, who was the oldest confirmed human, are there any living things that are biologically immortal, and if there was an option to become biologically immortal, would you take it?

0:00 Intro.
3:42 The Oldest Human.
4:50 The Lobster.
9:01 It’s Not the Years Honey, It’s the Mileage.
13:32 Would You Want to Be Biologically Immortal?
17:24 The Senescent Cell Problem.
20:46 A Myriad of Other Factors.
26:04 The Biologically Immortal Creatures.

Author: Daven Hiskey.

A massive hole opened up in the Sun’s atmosphere over the weekend, measuring more than 60 times the diameter of the Earth across at its peak.

Coronal holes like this one, imaged by NASA’s Solar Dynamics Observatory, occur when the Sun’s magnetic field suddenly allows a huge stream of the star’s upper atmosphere to pour out in the form of solar wind.

Over a short period of time, these highly energized particles can eventually make their way to us and — if powerful enough — wreak havoc on satellites in the Earth’s orbit. In rare instances, they can even mess with the electrical grid back on the ground.