Want to make high quality Shorts in 1 click using AI like we do? Sign up for Opus Clip for FREE and start clipping your content right away: https://www.opus…
Scientists at University College Cork have uncovered a unique superconducting state in Uranium Ditelluride, which could pave the way for more stable and efficient quantum computers. This groundbreaking discovery offers a potential solution to one of quantum computing.
Performing computation using quantum-mechanical phenomena such as superposition and entanglement.
Dr. Howard Tucker has been practicing medicine and neurology for over 75 years. The 101-year-old doctor shares his No. 1 secret for keeping your brain sharp.
Blood vessels form the transportation network within our bodies. They are streets where red and white blood cells drive. They are the delivery system to oxygenate our brain and other vital organs and muscles. There are other highways in our bodies such as our nervous and lymphatic systems, but blood vessels are the ones that are central to healthy heart function and keeping our brain supplied with oxygen. When blood vessels are compromised we can suffer a stroke, heart attack, aneurysm or die.
When usual causes of heart attacks are blocked coronary arteries. The coronary arteries supply blood and oxygen to the heart. When partially blocked people experience symptoms like angina. When blocked they can suffer a myocardial infarction, the fancy name for a heart attack.
Today, harvested blood vessel grafts from human donors or the patient are used for bypassing coronary blood vessel blockages. But researchers at the University of Melbourne believe that fabricated blood vessel tissue that can be shaped to any need would be an effective substitute for existing grafts. The team in its search for a graft alternative has combined a variety of materials and living tissue with a fabrication technique to create complex blood vessels that can serve multiple purposes.
A century-old mystery of how galaxies change shapes has been solved by considering “survival of the fittest” collisions between cosmic titans.
Go to https://brilliant.org/IsaacArthur/ to get a 30-day free trial + the first 200 people will get 20% off their annual subscription.
In the future we may deploy armies of cybernetic superhumans to fight our battles, people so augmented they could tear through walls or dodge bullets. But would these invincible warriors be willing to fight for mundane humans, or merely fight each other to rule us?
Visit our Website: http://www.isaacarthur.net.
Watch ad-free on Nebula: https://nebula.tv/videos/isaacarthur-cyborg-armies.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE
Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version: https://soundcloud.com/isaac-arthur-148927746/cyborg-armies.
Episode’s Narration-only version: https://soundcloud.com/isaac-arthur-148927746/cyborg-armies-narration-only.
Credits:
Classical thermodynamics has only a handful of laws, of which the most fundamental are the first and second. The first says that energy is always conserved; the second law says that heat always flows from hot to cold. More commonly this is expressed in terms of entropy, which must increase overall in any process of change. Entropy is loosely equated with disorder, but the Austrian physicist Ludwig Boltzmann formulated it more rigorously as a quantity related to the total number of microstates a system has: how many equivalent ways its particles can be arranged.
The second law appears to show why change happens in the first place. At the level of individual particles, the classical laws of motion can be reversed in time. But the second law implies that change must happen in a way that increases entropy. This directionality is widely considered to impose an arrow of time. In this view, time seems to flow from past to future because the universe began — for reasons not fully understood or agreed on — in a low-entropy state and is heading toward one of ever higher entropy. The implication is that eventually heat will be spread completely uniformly and there will be no driving force for further change — a depressing prospect that scientists of the mid-19th century called the heat death of the universe.
Boltzmann’s microscopic description of entropy seems to explain this directionality. Many-particle systems that are more disordered and have higher entropy vastly outnumber ordered, lower-entropy states, so molecular interactions are much more likely to end up producing them. The second law seems then to be just about statistics: It’s a law of large numbers. In this view, there’s no fundamental reason why entropy can’t decrease — why, for example, all the air molecules in your room can’t congregate by chance in one corner. It’s just extremely unlikely.
In this week’s live stream, I’m going to share clips of my interview with Isaac Arthur, which you can find the full version on the Answers With Joe Podcast: h…
A potentially game-changing theoretical approach to quantum computing hardware avoids much of the problematic complexity found in current quantum computers. The strategy implements an algorithm in natural quantum interactions to process a variety of real-world problems faster than classical computers or conventional gate-based quantum computers can.
“Our finding eliminates many challenging requirements for quantum hardware,” said Nikolai Sinitsyn, a theoretical physicist at Los Alamos National Laboratory. He is co-author of a paper on the approach in the journal Physical Review A. “Natural systems, such as the electronic spins of defects in diamond, have precisely the type of interactions needed for our computation process.”
Sinitsyn said the team hopes to collaborate with experimental physicists also at Los Alamos to demonstrate their approach using ultracold atoms. Modern technologies in ultracold atoms are sufficiently advanced to demonstrate such computations with about 40 to 60 qubits, he said, which is enough to solve many problems not currently accessible by classical, or binary, computation. A qubit is the basic unit of quantum information, analogous to a bit in familiar classical computing.