Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Femtotech: computing at the femtometer scale using quarks and gluons from Hugo de Garis

Sept 22 2016.


Kurzweilai – How the properties of quarks and gluons can be used (in principle) to perform computation at the femtometer (10^−15 meter) scale.

An atom is about 10^−10 m in size.

The next smallest thing in nature is the nucleus, which is about 100,000 times smaller, i.e., 10^−15 m in size — a femtometer, or “fermi.” A nucleus is composed of protons and neutrons (i.e., “nucleons”), which we now know are composed of 3 quarks, which are bound (“glued”) together by massless (photon-like) particles called “gluons.”

Hence if one wanted to start thinking about a possible femtotech, one would probably need to start looking at how quarks and gluons behave, and see if these behaviors might be manipulated in such a way as to create a technology, i.e., computation and engineering (building stuff).

Is this Rivian’s more affordable R2 electric SUV spotted in the wild?

As we get closer to the official debut of Rivian’s more affordable R2, we are finally getting a better idea of what to expect. After teasing the model for the first time yesterday, Rivian’s R2 was reportedly spotted filming in downtown LA shortly after.

Rivian opened the R2 website yesterday, teasing the first look at the new EV in an intro video. The new EV will be revealed on March 7 at its new flagship Laguna showroom.

Although Rivian teased the new model leading up to its highly anticipated debut, we have yet to see what it looks like in full, until now. A patent filed by Rivian last month revealed a more compact electric SUV than the R1S with slightly smaller headlights.

Research team discovers two-dimensional waveguides

The U.S. Naval Research Laboratory (NRL), in collaboration with Kansas State University, has discovered slab waveguides based on the two-dimensional material hexagonal boron nitride. This milestone has been reported in the journal Advanced Materials.

Two-dimensional (2D) materials are a class of materials that can be reduced to the monolayer limit by mechanically peeling the layers apart. The weak interlayer attractions (van der Waals attraction) allow the layers to be separated via the so-called “Scotch tape” method.

The most well-known 2D material, graphene, is a semimetallic material consisting of a single layer of carbon atoms. Recently, other 2D materials including semiconducting (TMDs) and insulating hexagonal boron nitride (hBN) have also garnered attention. When reduced near the monolayer limit, 2D materials have unique nanoscale properties that are appealing for creating atomically thin electronic and .

Global project to drive lifesaving agreement on appropriate antimicrobial drug use

University of Melbourne researchers are leading a new push to address the growing harm of antimicrobial resistance (AMR) as more humans and animals become seriously ill or die from infections that medicine once treated easily.

Over-use and misuse of microbe-killing drugs – including antibiotics, antivirals and antifungals – is the main driver accelerating the evolution of resistance to these drugs in bacteria, viruses, fungi and parasites around the world.

The World Health Organisation calls AMR a top global public health threat that was directly responsible for 1.27 million deaths and contributed to 4.95 million deaths in 2019.

Nestars: Study suggests gravastars akin to nesting doll structure

Physicists have theorized the existence of new types of celestial objects that they name “nestars.”

These are gravitational condensate stars, or gravastars, nestled among other gravitational condensate stars, like a Russian matryoshka doll, or nesting doll.

This type of doll is distinguished by its hollow, round form and the ability to be split apart to reveal a sequence of increasingly smaller dolls nestled inside.

Astronomers investigate what causes bright flashes in space

Some of the oddest cosmic phenomena are short but tremendously powerful bursts of radio waves, which, in a fraction of a second, can give off as much energy as the sun does in a year. Known as fast radio bursts, these incredibly bright flashes of energy are thought to be related to dying stars called magnetars. Now, using two separate telescopes, astronomers have observed one of these events just a few minutes before and after it occurred, giving the best look yet at what causes these strange events.

Astronomers used NASA’s NICER (Neutron Star Interior Composition Explorer) on the International Space Station and NuSTAR (Nuclear Spectroscopic Telescope Array) in low-Earth orbit to observe a magnetar called SGR 1935+2154. Magnetars are a type of neutron star, the dense core left behind after a star collapses and with an extremely strong magnetic field. In October 2022, this magnetar gave off one of these strange, fast radio bursts.