Menu

Blog

Search results for 'spacex': Page 284

Mar 8, 2014

The Future of Scientific Management, Today!

Posted by in categories: 3D printing, big data, business, computing, defense, futurism, law enforcement, life extension, robotics/AI, science, security

LIST OF UPDATES (MARCH 10 THROUGH MARCH 16/2014). By Mr. Andres Agostini at The Future of Scientific Management, Today! At http://lnkd.in/bYP2nDC

lba

New US Military Space Plane Aims for 2017 Liftoff
http://www.space.com/24639-united-states-military-space-plane-xs1.html

9 hot Indian innovators that Silicon Valley could buy next
http://www.globalpost.com/dispatch/news/regions/asia-pacific…ld-buy-nex

Continue reading “The Future of Scientific Management, Today!” »

Mar 3, 2014

The Future of Scientific Management, Today!

Posted by in categories: big data, biological, business, complex systems, computing, economics, education, energy, engineering, futurism, genetics, geopolitics, life extension, physics, science, supercomputing

LIST OF UPDATES (MARCH 03 THROUGH MARCH 10/2014). By Mr. Andres Agostini at The Future of Scientific Management, Today! At http://lnkd.in/bYP2nDC

lba

Making nanoelectronics last longer for medical devices and ‘cyborgs’
http://www.kurzweilai.net/making-nanoelectronics-last-longer…es-cyborgs

Are you ready for the Internet of Cops?
http://www.kurzweilai.net/are-you-ready-for-the-internet-of-cops

Continue reading “The Future of Scientific Management, Today!” »

Dec 12, 2013

How Will Space Commuters Navigate A Thicket Of Air Traffic?

Posted by in categories: complex systems, space, transportation

“When space traffic becomes routine, there’s going to be significant conflict between commercial air traffic and space traffic,” says Juan Alonso, a Stanford professor of aeronautics and astronautics.

Right now, orbital launches are infrequent — about 70 per year around the world. So if there is, say, a SpaceX Falcon 9 launch scheduled from Cape Canaveral, the FAA decrees the area to be a “special use airspace” and bars plane traffic from the area for hours to accommodate it.

But Alonso is thinking 5 to 7 years into the future. With space tourism carriers like Virgin Galactic and XCOR planning multiple suborbital flights per day, and orbital flyers like SpaceX, Sierra Nevada, and Bigelow sending people and material into orbit, the skies will be getting crowded. The suborbital “up-and-down” space tourism flights offered by carriers like Virgin Galactic and XCOR may number anywhere from several hundred to multiple thousands a year – from zero today. Airline passengers will be less than thrilled to accept a lengthy delay so a rock star can sing in space or a billionaire can hang out in a “space hotel.” Also, airlines lose money from delays, or from re-routing around special-use airspace, requiring extra fuel burn.

Read more

Dec 13, 2012

Deathstars and David Criswell

Posted by in categories: space, sustainability

http://news.yahoo.com/blogs/ticket/build-death-star-petition…itics.html

When the possible mixes with fantasy it should turn peoples heads- it does not happen very often. But this toungue-in-cheek petition is actually a case of truth being so close to fiction and no one seems to be noticing. I have been posting in the comments section of Centauri Dreams lately due to my disappointment with the contributor situation on the lifeboat blog and I am now happy to share edited versions of them here.

December 11, 2012 at 7:50

It is now the second decade of the twenty first century and we actually have a
tremendous amount of technology available and devices that may have been tested in some form in the past and found to work quite well but by various circumstance did not enter production. The example that every real space nut is aware of is the Aerojet AJ-260 monolithic solid rocket booster. Each of these put out over 7 million pounds of thrust and would probably have been used in a pair with yet another aerojet product called the M-1 http://en.wikipedia.org/wiki/M-1_(rocket_engine) as a core liquid engine as in the Titan configuration. This was the logical progression of a more powerful partially reusable vehicle to replace the Saturn V; a vehicle with over twice the first stage thrust. Instead we tried to go cheap with the Space Shuttle and recieved zero ROI. In fact we have the ability to build much larger solid boosters of up to 325 inches. Built with submarine hull technology it is recovered at sea and resused. This system is the only practical reusable technology as the liquid shuttle motors turned out to be a total waste of time returning to earth for reuse.

Continue reading “Deathstars and David Criswell” »

Nov 20, 2012

Google’s 100,000 Stars & the Paradigmatic Disruption of Large-Scale Innovation Revisited

Posted by in categories: cosmology, general relativity, human trajectories, information science, physics, scientific freedom, space


The 100,000 Stars Google Chrome Galactic Visualization Experiment Thingy

So, Google has these things called Chrome Experiments, and they like, you know, do that. 100,000 Stars, their latest, simulates our immediate galactic zip code and provides detailed information on many of the massive nuclear fireballs nearby.


Zoom in & out of interactive galaxy, state, city, neighborhood, so to speak.

It’s humbling, beautiful, and awesome. Now, is 100, 000 Stars perfectly accurate and practical for anything other than having something pretty to look at and explore and educate and remind us of the enormity of our quaint little galaxy among the likely 170 billion others? Well, no — not really. But if you really feel the need to evaluate it that way, you are a unimaginative jerk and your life is without joy and awe and hope and wonder and you probably have irritable bowel syndrome. Deservedly.

The New Innovation Paradigm Kinda Revisited
Just about exactly one year ago technosnark cudgel Anthrobotic.com was rapping about the changing innovation paradigm in large-scale technological development. There’s chastisement for Neil deGrasse Tyson and others who, paraphrasically (totally a word), have declared that private companies won’t take big risks, won’t do bold stuff, won’t push the boundaries of scientific exploration because of bottom lines and restrictive boards and such. But new business entities like Google, SpaceX, Virgin Galactic, & Planetary Resources are kind of steadily proving this wrong.

Continue reading “Google's 100,000 Stars & the Paradigmatic Disruption of Large-Scale Innovation Revisited” »

Oct 14, 2012

The Kline Directive: Economic Viability

Posted by in categories: business, complex systems, defense, economics, education, engineering, finance, military, nuclear weapons, philosophy, physics, policy, scientific freedom, space, sustainability

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts:

1. Legal Standing. 2. Safety Awareness. 3. Economic Viability. 4. Theoretical-Empirical Relationship. 5. Technological Feasibility.

In this post I will explore Economic Viability. I have proposed the Interstellar Challenge Matrix (ICM) to guide us through the issues so that we can arrive at interstellar travel sooner, rather than later. Let us review the costs estimates of the various star drives just to reach the velocity of 0.1c, as detailed in previous blog posts:

Interstellar Challenge Matrix (Partial Matrix)

Propulsion Mechanism Legal? Costs Estimates
Conventional Fuel Rockets: Yes Greater than US$1.19E+14
Antimatter Propulsion: Do Not Know. Between US$1.25E+20 and US$6.25E+21
Atomic Bomb Pulse Detonation: Illegal. This technology was illegal as of 1963 per Partial Test Ban Treaty Between $2.6E12 and $25.6E12 . These are Project Orion original costs converted back to 2012 dollar. Requires anywhere between 300,000 and 30,000,000 bombs!!
Time Travel: Do Not Know. Requires Exotic Matter, therefore greater than antimatter propulsion costs of US$1.25E+20
Quantum Foam Based Propulsion: Do Not Know. Requires Exotic Matter, therefore greater than antimatter propulsion costs of US$1.25E+20
Small Black Hole Propulsion: Most Probably Illegal in the Future Using CERN to estimate. At least US$9E+9 per annual budget. CERN was founded 58 years ago in 1954. Therefore a guestimate of the total expenditure required to reach its current technological standing is US$1.4E11.

Note Atomic Bomb numbers were updated on 10/18/2012 after Robert Steinhaus commented that costs estimates “are excessively high and unrealistic”. I researched the topic and found Project Orion details the costs, of $2.6E12 to $25.6E12, which are worse than my estimates.

Continue reading “The Kline Directive: Economic Viability” »

Oct 9, 2012

The Kline Directive: Introduction

Posted by in categories: business, complex systems, defense, economics, engineering, ethics, finance, philosophy, physics, policy, space

Science and engineering are hard to do. If it wasn’t we would have a space bridge from here to the Moon by now. If you don’t have the real world practical experience doing either science or engineering you won’t understand this, or the effort and resources companies like Boeing, Lockheed, SpaceX, Orbital Sciences Corp, Scaled Composites, Virgin Galactic, and the Ad Astra Rocket Company have put into their innovations and products to get to where they are, today.

If we are to achieve interstellar travel, we have to be bold.
We have to explore what others have not.
We have to seek what others will not.
We have to change what others dare not.

The dictionary definition of a directive is, an instruction or order, tending to direct or directing, and indicating direction.

Dictionary of Military and Associated Terms, US Department of Defense 2005, provides three similar meanings,

Continue reading “The Kline Directive: Introduction” »

Sep 6, 2012

Flexible Path Flim Flam revised

Posted by in categories: asteroid/comet impacts, biotech/medical, business, counterterrorism, defense, economics, education, engineering, ethics, events, existential risks, futurism, geopolitics, habitats, human trajectories, life extension, lifeboat, media & arts, military, nuclear weapons, open source, physics, policy, space, transparency

I do not regret voting for this President and I would and will do it again. However.……I am not happy about our space program. Not at all. One would think there would be more resistance concerning the privatization of space and the inferior launch vehicles being tested or proposed. Indeed there would be objections except for a great deception being perpetrated on a nation ignorant of the basic facts about space flight. The private space gang has dominated public discourse with very little answering criticism of their promises and plans.
This writer is very critical of the flexible path.

It is a path to nowhere.

Compared to the accomplishments of NASA’s glory days, there is little to recommend the players in the commercial crew game. The most fabulous is Space X, fielding a cheap rocket promising cheap lift. There is so little transparency concerning the true cost of their launches that one space-faring nation has called the bluff and stated SpaceX launch prices are impossible. The Falcon 9, contrary to stellar advertising, is a poor design in so many ways it is difficult to know where to begin the list. The engines are too small and too many, the kerosene propellant is inferior to hydrogen in the upper stage, and promising to reuse spent hardware verges on the ridiculous. Whenever the truth about the flexible path is revealed, the sycophants begin to wail and gnash their teeth.

The latest craze is the Falcon “heavy.” The space shuttle hardware lifted far more, though most of the lift was wasted on the orbiter. With 27 engines the faux heavy is a throwback to half a century ago when clusters of small engines were required due to nothing larger being available. The true heavy rocket of the last century had five engines and the number of Falcon engines it would take to match the Saturn V proves just how far the mighty have fallen.

Continue reading “Flexible Path Flim Flam revised” »

Jun 24, 2012

The Importance of NASA

Posted by in categories: business, economics, education, engineering, policy, space

America has been a spacefaring nation since 1958. Over the past fifty-three years, America overtook its first rival, the Soviet Union (spacefaring since 1957), and maintained its supremacy in the aerospace and aeronautical industries, having the most developed and successful space program, the strongest private aerospace/aeronautical industry, and the most intelligent engineers and scientists. During times where space exploration and advanced scientific research programs seem inappropriate to publicly fund and continue where economic difficulties, contested military actions, and other civil/financial issues seem to demand precedence, it needs to be promoted that NASA (National Aeronautics and Space Administration) is of immense importance to the security and welfare of the United States of America and must remain a national priority. NASA drives STEM (science, technology, engineering, and mathematics) education as well as the development of commercial and defense technologies and works with private engineering and science companies across the country, employing thousands of brilliant engineers, scientists, and technicians to ensure the safety of the American people and maintain the technological and explorational prestige this country has always possessed.

NASA’s accomplishments are inspirational to students. It is capable of orbiting people around the planet in minutes, building a space station, and placing man on the moon, and in doing so powerfully inspires individuals to aspire for careers with the organization. In order to become involved with NASA, a student must study science, technology, engineering and/or mathematics, and by creating a strong incentive for people to study these topics, demand for STEM education increases. As demand increases, more STEM programs will develop and more people will become involved in STEM disciplines. Students studying STEM subjects develop critical thinking skills and strong senses of logic to overcome various problems and conflicts. New generations of engineers and scientists will rise to replace the retiring generations and surpass them in their accomplishments, but only will do so if opportunities to take such careers exist. Should NASA decay, it won’t only be NASA careers disappearing. Jobs at firms like Lockheed Martin, The Boeing Company, Northrop Grumman, Raytheon, and SpaceX among others will be lost as well and some of these firms will face immense downsizing or possibly even be forced to shut down, severely harming motivation for younger American students to pursue a degree or career in STEM related fields.

One of the greatest positive externalities of NASA is the technology developed as ‘spin-off’ used in the commercial and defense industries. When NASA was tasked with putting man on the moon, NASA realized the Apollo capsule would need computing systems installed within it that were far greater in power and far smaller than those currently in use and therefore tasked private industry with the development of compact computing devices that later became the PC and laptop. Without NASA funding, heart rate monitors, thermal video imaging, light emitting diodes, and velcro among many other technologies would not have been developed. While current domestic debate surrounds whether or not NASA should be downsized, enlarged, or completely phased out over time, foreign countries and blocs such as China, India, and the European Space Agency are investing even more time and money into improving their programs, their educational efforts, and plan to surpass American capabilities within the near future. Technological innovation, though still very prevalent within the United States, is beginning to grow very rapidly in foreign countries and more new technologies are being imported rather than exported every day. Instead of questioning whether or not NASA is necessary, America should be questioning what seemingly impossible task NASA should be working on next. Originally, the Apollo project seemed insurmountably difficult. But when national security threats (Soviet technological capabilities during the Cold War) met technological challenges (the Apollo program), NASA proved to be an irreplaceable source of innovation and wonder that united a nation, inspired a generation with dreams of space exploration, and provided a feeling of security to millions of people who feared another devastating war.

Which is also why NASA is critically important in the defense industry as a customer. NASA helps improve private and public defense and communication technologies. The relationship between NASA and the private industry is very symbiotic. NASA develops a plan or project and administers/contracts production and testing tasks out to the private industry, challenging thousands of engineers and scientists to improve their designs and inspires technological and manufacturing developments, which in turn allow NASA to complete its mission in an efficient and effective manner. China has proven it is capable of destroying our satellites by destroying one of its own and has announced its desire to develop a space program separated from America’s influence and plans to land on the moon in 2020. India, Israel, Iran, Pakistan, Romania, Japan, and Ukraine among others have all had confirmed launches and are working to become space powers themselves, developing their own aerospace industries and programs. Iraq and North Korea have also both touted successful launches, though their success are unconfirmed. NASA helps to keep America competitive by constantly challenging private industry and by making sure its goals for space and technological development are always beyond those of other countries, which helps to prevent enemies from defeating our technologies, thus keeping us safe.

Continue reading “The Importance of NASA” »

Jan 30, 2012

The Difference Between a Lunar Base and Colony

Posted by in categories: existential risks, habitats, lifeboat, space, sustainability

Recently, Newt Gingrich made a speech indicating that, if elected, he would want 10% of NASA’s budget ($1.7 billion per year) set aside to fund large prizes incentivizing private industry to develop a permanent lunar base, a new propulsion method, and eventually establishing a martian base.

THE FINANCIAL FEASIBILITY OF A LUNAR BASE
Commentators generally made fun of his speech with the most common phrase used being “grandiose”. Perhaps. But in 1996 the Human Lunar Return study estimated $2.5 billion from NASA to send and return a human crew to the Moon. That was before SpaceX was able to demonstrate significant reductions in launch costs. One government study indicated 1/3 of the cost compared to traditional acquisition methods. Two of SpaceX’s Falcon Heavies will be able to launch nearly as much payload as the Saturn V while doing so at 1/15th the cost of the same mass delivered by the Shuttle.

So, we may be at the place where a manned lunar base is within reach even if we were to direct only 10% of NASA’s budget to achieve it.

I’m not talking about going to Mars with the need for shielding but rather to make fast dashes to the Moon and have our astronauts live under Moon dirt (regolith) shielding while exploiting lunar ice for air, water, and hence food.

Continue reading “The Difference Between a Lunar Base and Colony” »

Page 284 of 285First279280281282283284285