Toggle light / dark theme

Breast cancer in its various forms affects more than 250,000 Americans a year. One particularly aggressive and hard-to-treat type is triple-negative breast cancer (TNBC), which lacks specific receptors targeted by existing treatments. The rapid growth and metastasis of this cancer also make it challenging to manage, leading to limited therapy options and an often poor prognosis for patients.

A promising new approach that uses minuscule tubes to deliver cancer-fighting drugs directly to the tumor site while preserving has been developed by Johns Hopkins engineers. The team’s research appeared in Nanoscale.

“In this paper, we showed that we can use to specifically target both proliferating and senescent TNBC cells with chemotherapeutics and senolytics, killing them without targeting healthy breast cells,” said Efie Kokkoli, professor of chemical and biomolecular engineering, a core researcher at the Johns Hopkins Institute for NanoBioTechnology, and a specialist in engineering targeted nanoparticles for the delivery of cancer therapeutics.

Ecologists have shown that the genetic material that species.

A species is a group of living organisms that share a set of common characteristics and are able to breed and produce fertile offspring. The concept of a species is important in biology as it is used to classify and organize the diversity of life. There are different ways to define a species, but the most widely accepted one is the biological species concept, which defines a species as a group of organisms that can interbreed and produce viable offspring in nature. This definition is widely used in evolutionary biology and ecology to identify and classify living organisms.

Vertical farming saves water, land, and energy — and it could be how we grow food on Mars.

Subscribe here: http://freeth.ink/youtube-subscribe-verticalfarming.

Vertical farming is a type of indoor farming where crops are grown in stacked layers, rather than spread out across large plots of land. These farms offer many benefits over traditional ones, including the prospect of better access to healthy foods in underserved communities.

Because vertical farms use LED lighting, their output isn’t subject to the natural elements that typically affect plant production such as adverse weather, insects, and seasons.

Using a ballpoint pen filled with specially formulated inks, scientists have designed LEDs that can be drawn on everyday materials.

Even in our digital age, ballpoint pens are an irreplaceable tool for writing down flashes of inspiration or signing legally binding documents. The ink flowing through these everyday objects has always been a passive absorber of light, but Junyi Zhao from Washington University in St. Louis and colleagues have now changed that [1]. The team has designed a ballpoint pen that writes with ink that produces light as a light emitting diode (LED).

LEDs are used in everything from TV screens to lightbulbs. They are often made using highly tunable semiconducting materials called halide perovskites. However, these devices have traditionally been time and energy intensive to fabricate, and they do not easily adhere to nonuniform substrates, such as fabric and plastic.

A mathematical model shows how increased intricacy of cognitive tasks can break the mirror symmetry of the brain’s neural network.

The neural networks of animal brains are partly mirror symmetric, with asymmetries thought to be more common in more cognitively advanced species. This assumption stems from a long-standing theory that increased complexity of neural tasks can turn mirror-symmetric neural circuits into circuits existing in only one side of the brain. This hypothesis has now received support from a mathematical model developed by Luís Seoane at the National Center for Biotechnology in Spain [1]. The researcher’s findings could help explain how the brain’s architecture is shaped not only by cognitively demanding tasks but also by damage or aging.

A mirror-symmetric neural network is useful when controlling body parts that are themselves mirror symmetric, such as arms and legs. Moreover, the presence of duplicate circuits on each side of the brain can help increase computing accuracy and offer a replacement circuit if one becomes faulty. However, the redundancy created by such duplication can lead to increased energy consumption. This trade-off raises an important question: Does the optimal degree of mirror symmetry depend on the complexity of the cognitive tasks performed by the neural network?

Neutrinos, the tricky little particles that just stream through the Universe like it’s virtually nothing, may actually interact with light after all.

According to new calculations, interactions between neutrinos and photons can take place in powerful magnetic fields that can be found in the plasma wrapped around stars.

It’s a discovery that could help us understand why the Sun’s atmosphere is so much hotter than its surface, say Hokkaido University physicist Kenzo Ishikawa and Yutaka Tobita, a physicist from Hokkaido University of Science – and, of course, to study the mysterious ghost particle in greater detail.