Toggle light / dark theme

Pat Bennett’s prescription is a bit more complicated than “Take a couple of aspirins and call me in the morning.” But a quartet of baby-aspirin-sized sensors implanted in her brain are aimed at addressing a condition that’s frustrated her and others: the loss of the ability to speak intelligibly. The devices transmit signals from a couple of speech-related regions in Bennett’s brain to state-of-the-art software that decodes her brain activity and converts it to text displayed on a computer screen.

Bennett, now 68, is a former human resources director and onetime equestrian who jogged daily. In 2012, she was diagnosed with amyotrophic lateral sclerosis, a progressive neurodegenerative disease that attacks neurons controlling movement, causing physical weakness and eventual paralysis.


Our brains remember how to formulate words even if the muscles responsible for saying them out loud are incapacitated. A brain-computer hookup is making the dream of restoring speech a reality.

The human brain, with its intricate network of approximately 86 billion neurons, is arguably among the most complex specimens scientists have ever encountered. It holds an immense, yet currently immeasurable, wealth of information, positioning it as the pinnacle of computational devices.

Grasping this level of intricacy is challenging, making it essential for us to employ advanced technologies that can decode the minute, intricate interactions happening within the brain at microscopic levels. Thus, imaging emerges as a pivotal instrument in the realm of neuroscience.

The new imaging and virtual reconstruction technology developed by Johann Danzl’s group at ISTA is a big leap in imaging brain activity and is aptly named LIONESS – Live Information Optimized Nanoscopy Enabling Saturated Segmentation. LIONESS is a pipeline to image, reconstruct, and analyze live brain tissue with a comprehensiveness and spatial resolution not possible until now.

This is leading to even better brain engineering 👏 🙌 👌 😀 😄.


Computer-augmented brains, cures to blindness, and rebuilding the brain after injury all sound like science fiction. Today, these disruptive technologies aren’t just for Netflix, “Terminator,” and comic book fodder — in recent years, these advances are closer to reality than some might realize, and they have the ability to revolutionize neurological care.

Neurologic disease is now the world’s leading cause of disability, and upwards of 11 million people have some form of permanent neurological problem from traumatic brain injuries and stroke. For example, if a traumatic brain injury has damaged the motor cortex — the region of the brain involved in voluntary movements — patients could become paralyzed, without hope of regaining full function. Or some stroke patients can suffer from aphasia, the inability to speak or understand language, due to damage to the brain regions that control speech and language comprehension.

Thanks to recent advances, sometimes lasting neurologic disease can be prevented. For example, if a stroke patient is seen quickly enough, life-threatening or-altering damage can be avoided, but it’s not always possible. Current treatments to most neurologic disease are fairly limited, as most therapies, including medications, aim to improve symptoms but can’t completely recover lost brain function.