Toggle light / dark theme

Neuroscientists in New York have made a major breakthrough in memory research that promises to revolutionize our understanding of neurodegenerative diseases like Alzheimer’s.

A new study details how a structural cell that wraps around blood vessels may actually play an important role in the formation and storage of long-term memories.

According to the U.S Centers for Disease Control and Prevention, roughly 5.8 million American adults live with Alzheimer’s disease and other related dementias. And yet, our understanding of these diseases is still fairly limited, largely thanks to question marks over how memories are actually formed.

A new study, published in Nature Nanotechnology, may offer a strategy that mitigates negative side effects associated with intravenous injection of nanoparticles commonly used in medicine.

“Nanotechnology’s main advantage over conventional medical treatments is its ability to more precisely target tissues, such as targeted by chemotherapy. However, when nanoparticles are injected, they can activate part of the called complement,” said senior author Dmitri Simberg, Ph.D., professor of Nanomedicine and Nanosafety at the University of Colorado Skaggs School of Pharmacy on the University of Colorado Anschutz Medical Campus.

Complement is a group of proteins in the immune system that recognize and neutralize bacteria and viruses, including nanoparticles which are foreign to the body. As a result, nanoparticles are attacked by triggering side effects that include shortness of breath, elevated heart rate, fever, hypotension, and, in rare cases, anaphylactic shock.

The universe is expanding, but why? Dark Energy might be the key in solving this mystery.
Displate Posters: https://displate.com/promo/astrum?art=5f04759ac338b.

Astrum Merch! https://astrum-shop.fourthwall.com/
Join us on the Astrum discord: https://discord.gg/TKw8Hpvtv8
SUBSCRIBE for more videos about our other planets.
Subscribe! http://goo.gl/WX4iMN
Facebook! http://goo.gl/uaOlWW
Twitter! http://goo.gl/VCfejs.

Astrum Spanish: https://www.youtube.com/@astrumespanol.
Astrum Portuguese: https://www.youtube.com/channel/UChn_-OwvV63mr1yeUGvH-BQ

Donate!

Grass may transfer genes from their neighbors in the same way genetically modified crops are made, a new study has revealed.

Research, led by the University of Sheffield, is the first to show the frequency at which grasses incorporate DNA from other species into their genomes through a process known as lateral gene transfer.

The stolen genetic secrets give them an by allowing them to grow faster, bigger or stronger and adapt to new environments quicker.

“The Universe Came From a Black Hole” String Theory Founder Reveals James Webb Telescope’s New Image. Deep within dense star clusters, something extraordinary dwells: Stars. But these, are no ordinary stars, but colossal celestial beings, known as supermassive stars. And now, their existence has been unveiled by the piercing gaze of the James Webb Space Telescope.

According to the standard model of cosmology, after the universe came out of the big bang, it took between 500 million to 1 billion years for the first stars to form. That however, is changing.

We are not just finding single stars, but clusters of them in the early universe and that, has the whole scientific community stunned.

#space #jameswebbspacetelescope #nasa.

Google DeepMind and academic partners have unveiled an AI that trains robots for generalized tasks using the “Open X-Embodiment” dataset. ConceptGraphs, on the other hand, offers a new 3D scene representation, improving robot perception and planning by combining vision and language.

Deep Learning AI Specialization: https://imp.i384100.net/GET-STARTED
AI Marketplace: https://taimine.com/

AI news timestamps:
0:00 Google DeepMind RT-2-X
4:33 ConceptGraphs AI Robot Vision.

#google #ai #robot

Physicists have performed the first quantum calculations to be carried out using individual atoms sitting on a surface.

The technique, described on 5 October in Science1, controls titanium atoms by beaming microwave signals from the tip of a scanning tunnelling microscope (STM). It is unlikely to compete any time soon with the leading approaches to quantum computing, including those adopted by Google and IBM, as well as by many start-up companies. But the tactic could be used to study quantum properties in a variety of other chemical elements or even molecules, say the researchers who developed it.

At some level, everything in nature is quantum and can, in principle, perform quantum computations. The hard part is to isolate quantum states called qubits — the quantum equivalent of the memory bits in a classical computer — from environmental disturbances, and to control them finely enough for such calculations to be achieved.

face_with_colon_three Year 2017


A paper recently published in the journal Nuclear Engineering and Technology demonstrated the feasibility of using graphene to control hydrogen isotopes, specifically tritium.

Study: Adsorption of Hydrogen Isotopes on Graphene. Image Credit: Rost9/Shutterstock.com

Background

Year 2018 face_with_colon_three


Computers are shrinking rapidly. You can build a pretty capable little machine powered by a device like the Raspberry Pi, but that’s still huge compared with IBM’s latest machine. The company that started out selling massive mainframe computers has developed the world’s smallest computer (Opens in a new window). Each one is smaller than a grain of salt, but it packs more computing power than you’d expect.

The micro-computer is a complete system-on-a-chip (SoC) with a processor, memory, storage, and a communication module. The CPU contains several hundred thousand transistors, and IBM says it’s capable of performance on par with an x86 CPU from 1990. That’s not very fast compared with even the slowest modern computers, but it’s impressive for something you can’t see without a magnifying glass. It makes more sense when you look at the impressive developments in other SoC designs. The latest Qualcomm Snapdragon chips are about 1 square centimeter and have more processing power than supercomputers from the early 90s.

The chip is just a prototype right now, but IBM has big plans (Opens in a new window) for this (literally) microscopic computer. It’s touting this as a significant advancement for blockchain technology, but not the same blockchain that’s used to track Bitcoin transactions. A blockchain is merely a distributed ledger that can be used for various purposes. IBM and other companies have been looking for ways to use blockchains without the cryptocurrency attached.